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Preface for Teachers 
Of making many books there is no end; 

and much study is a weariness of the flesh. 

- Ecclesiastes 12:12 

Linear algebra is still new. Its first devoted textbook for undergraduates, Paul Halmos’s Finite-Dimensional 

Vector Spaces, was published only in 1942. As an undergraduate in the late 1990s, I was assigned a newish 

textbook that’s now considered a classic in its own right: Linear Algebra Done Right by Sheldon Axler, one 

of Halmos’s “grandstudents”.* As fate would have it, I went on to become one of Axler’s grandstudents. 

The Dark Art of Linear Algebra thus continues a family tradition. But the line of descent ends here. 

Childless and alone, I roam the manor’s halls, clutching my candelabra, conscious of the ancestral portraits 

gazing at me from the walls.† 

We know how to write calculus textbooks. We’ve known this for centuries, and as a result, almost all 

calculus texts now tend towards the same form. Naturally, there are variations in authors’ expository skill, 

level of rigor, interest in applications, and so forth. But pick up a random calculus textbook and we know 

what to expect inside: not just the topics, but the order in which they will appear, and even which hoary 

old homework problems will accompany them.‡ 

Linear algebra is different. We don’t yet know the right way to teach it to an audience of beginners, 

and I’m confident that neither of the two most common approaches today will stand the test of time. 

The traditional abstract approach, which starts from the vector space axioms, is, for all its mathematical 

elegance, opaque to beginners. On the other hand, the current fashion for introducing linear algebra via 

systems of linear equations is so mind-numbingly dull as to constitute a crime against art. 

In The Dark Art of Linear Algebra, I take a third approach, emphasizing geometry and intuition and 

delaying systems of linear equations until after students have developed a strong grasp of linear maps 

(and the matrices that represent them) and have mastered linear algebra’s core vocabulary: span, linear 

independence, basis, subspace, and so forth. This third way is rare in textbooks, but a series of beautiful 

videos develops its outlines: Grant Sanderson’s “The Essence of Linear Algebra”, available on his YouTube 

channel 3Blue1Brown. Sanderson’s videos make excellent complementary material for students reading 

The Dark Art of Linear Algebra, since our approaches are so similar in spirit. 

Market forces have produced generations of grotesquely bloated textbooks, but self-publication has 

mercifully freed me from them. I’ve had the luxury of writing a textbook that – miracle of miracles – 

students can read from cover to cover while taking a single college course. Completing a textbook is a 

good feeling. We should not deny our students this small pleasure. 

Should you spot any typos or errors, please let me know. I can’t offer you extra credit (as I do for my 

students), but I can offer you thanks, and I will praise your name as I ruthlessly expunge any imperfections 

you’ve identified. Should you use this book in a class, I’d especially appreciate hearing from you. 

 
* Axler was Halmos’s “grandstudent” in the sense that Axler’s PhD advisor, Donald Sarason, was advised in his PhD by Halmos. 

Such mathematical begettings are fun to trace online at the Mathematics Genealogy Project. Karl Friedrich Gauss, it turns out, 
is one of my direct mathematical ancestors. Eleven intervening generations separate us.   

† Forgive me, great-great-grandfather Halmos. My textbooks have illustrations, and I will sometimes sacrifice rigor for intuition. 
Forgive me, grandfather Axler, for I have used determinants. I honor you both. My book is meant to reach different audiences 
than either of yours do, and as such, it is animated by a somewhat different spirit, but I trust that it will extend our family’s 
legacy of high quality linear algebraic exposition. 

‡ My own calculus textbook, Full Frontal Calculus, is unusual in several respects (it is short, for instance, and uses infinitesimals), 
but even it adheres to the basic script – hoary old problems and all. 
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Preface for Students 

Just remember that where there’s no linear 

there’s no delineation. Try and stay focused. 

 - The Thalidomide Kid, from Cormac McCarthy’s The Passenger. 

Calculus is the summit of the high school math curriculum. Few climb it, but everyone that knows it exists. 

But linear algebra? How many people have even heard of it? Is it like ordinary algebra? Is it harder than 

calculus? Does anyone actually use it in applications? What is this dark art? 

Geometrically speaking, linear algebra is concerned only with flatness: lines, planes, and hyperplanes. 

This sounds limited (and indeed it is), but those very constraints are what make the subject fundamental. 

Compare trigonometry. Who needs a whole subject devoted to measuring triangles? Well, everyone does. 

Any polygon can be chopped up into triangles, so if you understand triangles, you understand polygons. 

Moreover, the basic trigonometric functions take on their own life, transcend their humble origins, and 

become central to all periodic phenomena. Similarly, who needs linear algebra? Everyone does. There’s a 

sense, familiar from calculus, in which non-linear phenomena can be reduced (on an infinitesimal scale) 

to linear phenomena, so understanding the linear world helps us grasp the nonlinear world as well. 

Moreover, linear algebra’s basic functions, linear transformations (and the matrices that represent them), 

take on their own lives, transcend their origins, and become indispensable tools throughout mathematics, 

science, engineering, computer science, statistics, and even economics. In today’s world – especially its 

technological side – linear algebra is probably the single most frequently applied part of mathematics.  

You should read The Dark Art of Linear Algebra slowly and carefully, with your pen and paper at hand. 

When I omit algebraic details, you should supply them. When I use a phrase such as “as you should verify”, 

you should do so. Only after reading a section should you try to solve the problems at the end. When you 

encounter something you don’t understand, mark the relevant passage and try to clear it up – first on 

your own, then by discussing it with your classmates or teacher. 

Conceptual understanding is especially crucial in linear algebra – much more so even than in calculus. 

Unlike many calculus computations, those involved in linear algebra are straightforward, even childish. 

They can be tedious, to be sure, but there’s nothing here like the difficulty of cracking a tough integral. 

You need to be able to do these linear algebraic computations, of course, but that’s not what learning 

linear algebra is about. Your main job is to understand how linear algebra’s many concepts fit together, 

which in turn will let you understand which computations to make, and why they are appropriate. 

For supplementary material, I highly recommend Grant Sanderson’s series of videos “The Essence of 

Linear Algebra”, which you can find on his YouTube channel, 3Blue1Brown. Sanderson’s beautiful 

animations bring linear transformations to life in ways that simply aren’t possible on the printed page. 

The general approach he takes in his videos is similar to mine in this book, although he does not discuss 

linear algebra’s computational aspects. I also recommend trawling the internet for examples of how linear 

algebra is applied in your fields of interest. Examples abound, and these will give you further impetus to 

learn linear algebra – even if you can’t at first fully understand the applications. 

But enough throat clearing. Let’s begin. 



 

 

 

 

 

 

 

Chapter 3 

Linear Transformations 

and Matrices 
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Linear Maps and Their Matrices 
As Gregor Samsa awoke one morning from uneasy dreams, he 

found himself transformed in his bed into a gigantic insect. 

 - Franz Kafka, “The Metamorphosis” 

 

Calculus focuses on real-valued functions of real numbers; we visualize these functions as static graphs. 

Linear algebra focuses on vector-valued functions of vectors; we visualize these functions dynamically, 

as distortions of space itself. More specifically, linear algebra’s functions are “grid transformations”: they 

work by dragging the tips of some or all of the standard basis vectors to new locations, thus transforming 

the grid they generate. These special functions are called linear transformations (or linear maps). 

 For example, the graph at right shows the standard graph-paper 

grid generated by 𝐢 and 𝐣. (Point 𝑂 is the origin. Points 𝑃, 𝑄, 𝑅 and the 

enthusiastic right hand are all just stage props that will help us illustrate 

the effect of a linear map in a few moments.) Now let’s go ahead and 

apply our first linear transformation: We will drag the tips of 𝐢 and 𝐣 to 

points (2, 1) and (1, 2) respectively. When we transform 𝐢 and 𝐣 this 

way, we transform the entire grid that they generate. The result is 

shown below, in the second figure. 

The original grid of squares (displayed now as a ghostly background) 

has been replaced by a grid of parallelograms generated by 𝐢′ and 𝐣′, the 

names I’ll use for the transformed images of 𝐢 and 𝐣. Clearly, this linear 

transformation will distort any figure lying in the plane, such as the 

hand. But one crucial feature remains constant: Even though the linear 

map moves most of the points in the plane, it preserves their 

coordinates relative to the grid. For example, point 𝑃 (first figure) 

corresponds to vector 2𝐢 + 𝐣; its image, point 𝑃′ (second figure) 

corresponds to vector 2𝐢′ + 𝐣′. In both cases, we get to the point by 

following precisely the same “marching orders”: Start from the origin, take two steps forward in the 

direction of the first “axis”, and then take one step forward in the direction of the second “axis”. We 

usually describe this by saying that linear transformations preserve linear combinations of vectors. 

You should verify on the pictures above that the same phenomenon happens with points 𝑄 and 𝑄′. 

Finally, although point 𝑅’s image, 𝑅′, is “offscreen”, we know where it must lie: In the first figure, 𝑅 

corresponds to 5𝐢 + 3𝐣, so in the second, 𝑅′ must “by linearity” correspond to 5𝐢′ + 3𝐣′. It would thus lie 

somewhere just beyond the right edge of this page. 

Every linear transformation – not just the one above – preserves linear combinations of vectors. This 

is their defining feature, the very thing that makes linear transformations special. 

To summarize, a linear map’s geometric essence is a grid transformation induced by dragging the tips 

of the standard basis vectors to new places. A linear map’s algebraic essence, which is a direct reflection 

of its geometric essence, is the preservation of linear combinations: Every vector is a certain linear 

combination of the standard basic vectors; when subjected to a linear map, its transformed image will be 

precisely that same linear combination of the transformed basis vectors. It follows that if we know how a 

linear map transforms the standard basis vectors, we know how it transforms every vector. 
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This means we can describe any linear transformation quite compactly. Rather than trying to illustrate 

its effect with figures (tedious in ℝ2, difficult in ℝ3, impossible in higher dimensions), we need only specify 

where the transformation sends the standard basis vectors. We encode this core information in a matrix 

whose 𝑖th column simply records the components of the 𝑖th standard basis vector’s transformed image. 

We call the resulting matrix the linear map’s matrix (relative to the standard basis).  

Example 1. According to our definition above, the matrix 

(
1.5 −1
0.5 1

) 

represents the linear map that sends 𝐢 to 𝐢′ = 1.5𝐢 + 0.5𝐣 and 

sends 𝐣 to 𝐣′ = −𝐢 + 𝐣. I’ve drawn the transformation at right. 

With or without this visual aid, we can easily determine where 

this linear transformation will send any given vector.  

For instance, where will it send 2𝐢 + 3𝐣? Well, even without the visual aid, we know that linear 

maps preserve linear combinations, so this vector will be sent to 2𝐢′ + 3𝐣′, which is 

2 (
1.5
0.5
) + 3 (

−1
1
) = (

0
4
). 

You can also confirm this by looking at the figure: Starting from the origin, two “𝐢′-steps” followed 

by three “𝐣′-steps” brings us to (0, 4) on the original square grid.   

Mathematicians have invented a powerful algebraic shortcut: Instead of writing out the sentence 

“The linear transformation whose matrix is (
1.5 −1
0.5 1

) sends (
2
3
) to (

0
4
)”, 

we express the same idea more concisely as an equation:  

(
1.5 −1
0.5 1

) (
2
3
) = (

0
4
). 

We refer to the operation on the left side of this equation as matrix-vector multiplication. However, this 

“multiplication” should really make you think of function evaluation. This matrix (or better yet, the linear 

map that it represents) takes 2𝐢 + 𝟑𝐣 as its input, and produces 4𝐣 as its output. Once you have internalized 

the idea that matrix-vector multiplication simply indicates where a given linear map sends a given vector, 

it becomes very easy to reduce the process to a few mindless turns of an algebraic crank. 

Consider a perfectly general expression of matrix-vector multiplication: 

(
𝑎 𝑐
𝑏 𝑑

) (
𝑣1
𝑣2
). 

What will the product be? Well, by definition, this matrix represents the linear map that sends 𝐢 and 𝐣 to 

𝐢′ = (
𝑎
𝑏
)    and    𝐣′ = (

𝑐
𝑑
). 

Because linear transformations preserve linear combinations, it follows that our generic linear map must 

send the generic vector 𝑣1𝐢 + 𝑣2𝐣 to the vector 𝑣1𝐢′ + 𝑣2𝐣′, which is 

𝑣1 (
𝑎
𝑏
) + 𝑣2 (

𝑐
𝑑
). 
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And thus we have our answer: 

(
𝑎 𝑐
𝑏 𝑑

) (
𝑣1
𝑣2
) = 𝑣1 (

𝑎
𝑏
) + 𝑣2 (

𝑐
𝑑
). 

This is a crucial result. Let us rephrase it and sanctify it in a box: 

 

 

 

Example 2. (
2 1
1 2

) (
3

−1
) = 3(

2
1
) − 1 (

1
2
) = (

𝟓
𝟏
).   

As you should verify, the matrix here represents the linear map whose “before and after” pictures 

appear on the first page of this section. Moreover, as you should also verify, this example’s input 

and output vectors correspond to points 𝑄 and 𝑄′ on those figures.  

Every matrix-vector multiplication can be understood as mapping one vector to another via a linear 

transformation, a geometric operation whose effect is entirely determined by the columns of the matrix. 

This is linear algebra’s central geometric idea, comparable in importance to calculus’s key geometric ideas: 

all derivatives can be understood as slopes, and all definite integrals can be understood in terms of area. 

This isn’t the only way to think of matrix-vector multiplication, but it is the fundamental one to which we’ll 

return time and time again. It follows that this section may be the most important one in the entire book. 

To reinforce its ideas, let’s consider a few more examples. 

Example 3. Although grids and linear transformations are difficult to 

draw in ℝ3, they are not hard to imagine. The standard basis vectors 

generate a grid of cubes (as the figure at right suggests), and we can 

induce a linear map by dragging the tips of some or all of the standard 

basis vectors to new locations, as I’ve done in the figure below, 

where the cubes have become parallelepipeds. 

If I tell you that the matrix of this transformation is 

(
1.5   2 1
0   1 −0.5

−0.5   0 2
), 

then you can easily determine where it sends any point/vector in ℝ3. 

The first column of the matrix, for example, tells us that 𝐢 is scaled a 

bit and pushed under the 𝑥𝑦-plane to end up at 𝐢′ = 1.5𝐢 − 0.5𝐤. 

Similarly, we can read the fates of 𝐣 and 𝐤 directly from the matrix. 

Now consider any old vector: say, 𝟒𝐢 − 3𝐣 + 𝟔𝐤. Where will our 

linear map send it? Following our matrix-vector multiplication recipe 

(in the box above), we see that the map will send the vector to 

        (
1.5   2 1
0   1 −0.5

−0.5   0 2
)(

4
−3
6
) = 4(

1.5
0

−0.5
) − 3(

2
1
0
) + 6(

1
−0.5

2
) = (

𝟔
−𝟔
𝟏𝟎
).                   

A matrix-vector product is a weighted sum of the matrix’s columns, 

where the 𝑖th column’s weight is the vector’s 𝑖th entry.  
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In ℝ4 or still higher-dimensional spaces, linear maps may be impossible to visualize, and they are certainly 

impossible to draw, but writing down matrices that represent them is easy. You’ll have the chance to do 

that in the exercises, but for now, let us return to ℝ2 for an eminently familiar transformation. 

Example 4. Rotating the plane counterclockwise around the origin through an angle of 𝜃 is a 

transformation, but is it a linear transformation? If so, how can we represent it as a matrix?   

Solution.  We’ve defined a linear map as a grid transformation 

induced by dragging the tips of standard basis vectors to new 

places. A rotation about the origin clearly qualifies, because 

rotating 𝐢 and 𝐣 through 𝜃 induces a rotation of the whole grid.  

 Since a rotation is a linear map, we can represent it as a 

matrix. As discussed above, the columns of this matrix will be 

the rotated images of 𝐢 and 𝐣, expressed as column vectors. 

 The dashed circle in the figure is the unit circle, and by the 

unit-circle definitions of the sine and cosine functions, we can see that 𝐢′ = (cos 𝜃) 𝐢 + (sin𝜃) 𝐣. 

Those same definitions yield 𝐣′ = [cos(𝜃 + 90°)]𝐢 + [sin(𝜃 + 90°)]𝐣 = (−sin𝜃) 𝐢 + (cos 𝜃) 𝐣. 

It follows that the rotation matrix is 

(
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

). 

For example, if we wanted to know where the point (1.5, 0.2) ends up after rotating it 22° 

counterclockwise around the origin, we could now find the answer very easily. The point will end 

up at the point corresponding to the vector 

(
cos22° − sin22°
sin22° cos 22°

) (
1.5
0.2
) = 1.5 (

cos 22°
sin 22°

) + 0.2 (
−sin22°
cos22°

) ≈ (
1.32
0.63

). 

In other words, after the rotation, point (1.5, 0.2) ends up at approximately (𝟏. 𝟑𝟐, 𝟎. 𝟔𝟑). 

 Similarly, if we wished to rotate, say, (0.5,−0.7) clockwise around the origin by 137°, the 

same type of calculation will work if we let 𝜃 = −137° (Note that negative!): 

(
cos(−137°) − sin(−137°)
sin(−137°) cos(−137°)

) (
0.5

−0.7
) = 0.5 (

cos(−137°)
sin(−137°)

) − 0.7 (
−sin(−137°)

cos(−137°)
) ≈ (

−0.84
0.17

). 

Thus, after the rotation, point (0.5, −0.7) ends up at approximately (−𝟎. 𝟖𝟒, 𝟎. 𝟏𝟕).                              

So far, we’ve considered local changes wrought by linear maps. But what do such maps achieve globally? 

The linear maps of ℝ2 that we’ve met so far have moved points around the plane, but the global output 

of each such map was always… the plane. The analogous story held in our one example of a map of ℝ3. 

This raises a question: Must every linear map’s global output simply be the space on which it is defined? 

No. This has happened so far only because each map’s matrix has had linearly independent columns, which 

ensured that the standard basis vectors were just mapped onto a new basis for the same old space. But if 

a map were to have a matrix with linearly dependent columns, then the clean standard grid with which 

we started would be mapped onto a tangled grid, at least one of whose generating vectors lies in the span 

of the others, with the obvious result that at least one dimension of the global output would collapse. 
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Example 5. Discuss the linear map whose matrix is (
2 4
1 2

). 

Solution. The columns of this map’s matrix are linearly dependent: 

The transformed images of 𝐢 and 𝐣 lie along the same line. It follows 

that the columns’ span is that line. The linear map crushes the 

standard two-dimensional grid of squares down into the line, and 

thus, although the linear map is defined on ℝ2, its global output is 

nothing but this lone line, a one-dimensional subspace of ℝ2.    

It helps to think of a linear map as a continuous transformation, with the standard basis vectors (and grid) 

morphing into their images. For instance, in the previous example, we might imagine 𝐢 and 𝐣 lengthening 

and approaching one another (as in the sequence of pictures below), with both coming to rest on the line 

𝑦 = 𝑥/2, at which point all of two-dimensional space has folded up, fanlike, into a line. 

 

 

But suppose one of the vectors didn’t stop at the line, but crossed over it. Then what would happen?   

The figure at right shows such a situation. I’ve dragged 𝐣′ past 𝐢′, bringing 

its tip to rest at point (3, −1). Vectors 𝐢′ and 𝐣′ are now linearly independent, 

so the map’s global output is two-dimensional, but with a notable change: 

From its “folded up fan” state, the grid has now re-emerged “flipped over”. 

We’ve gone through the looking glass, reversing the orientations of figures 

in the plane. In our original drawing, for example, the hand was a right hand, 

but it has now been transformed into a left hand, just as your own right hand 

becomes a left hand when you view it in a mirror. I’ll say more about orientation-reversing maps in 

Chapter 5. For now, I’ll note that the simplest orientation-reversing maps are ordinary reflections. 

Reflections are some of the most basic (and important) of all linear transformations.  

Example 6. Find the matrix for reflection across the line 𝑦 = 𝑥. 

Solution. The before-and-after figures at right give us all we 

need: The tips of 𝐢 and 𝐣 are mapped, respectively, to points 

(0,1) and (1,0). Accordingly, the reflection matrix will be 

(
0 1
1 0

). 

To confirm that this is correct, we note that our reflection should send any point (𝑎, 𝑏) to (𝑏, 𝑎). 

Does our matrix actually accomplish this? Yes it does: 

(
0 1
1 0

) (
𝑎
𝑏
) = 𝑎 (

0
1
) + 𝑏 (

1
0
) = (

𝑏
𝑎
).                                                   
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Exercises. 

1. True or false. Explain your answers. 

a) Every linear transformation fixes the origin (i.e. maps the origin to itself). 

b) Every linear transformation moves all points other than the origin to new locations. 

2. For each transformation of ℝ2, find the associated matrix, and use it to determine where the map sends (2, 3). 

a) Reflection over 𝑥 = 0           b) Reflection over 𝑦 = 0           c) What about reflection over 𝑦 = 1? (Careful.)  

d) Rotation by 𝜃 counterclockwise about the origin. 

[Don’t just copy it down from the book or memorize it. Be sure you can explain where it comes from.] 

e) Rotation by 30° counterclockwise about the origin.             f) Rotation by 45° clockwise about the origin. 

g) The “do nothing” map, which leaves the plane as it is. This map’s matrix is called the identity matrix. 

3. The linear maps represented by the following matrices distort the square grid generated by 𝐢 and 𝐣 into new forms. 

Sketch the new grids. On each, indicate (without doing any calculations!) the images of 𝐢, 𝐣, and 𝐯 = 2𝐢 + 3𝐣. 

a)  (
1.5 0
0 2

)           b) (
   2 1
−1 1

)           c) (
−1 2
   1 0

) 

4. The linear map whose picture is shown at right is called a horizontal shear. 

a) Find the shear’s matrix. 

b) To which point is (10, 22) mapped by the shear?   

c) Which point is mapped to (10, 22) by the shear? 

d) The shear transforms the original grid’s squares into parallelograms. 

Does it change their areas in the process? Why or why not? 

e) Does shearing the sheep change its area? Why or why not?   

5. Some terminology: A matrix with 𝑛 rows and 𝑛 columns is called an 𝒏 × 𝒏 matrix (spoken as: “𝑛 by 𝑛 matrix”).  

a) Give two examples of 2 × 2 matrices that map all of ℝ2 onto the 𝑥-axis. 

b) Give two examples of 2 × 2 matrices that map all of ℝ2 onto the line 𝑦 = 2𝑥. 

c) Give two examples of 3 × 3 matrices that map all of ℝ3 onto the 𝑥-axis, thus crushing two dimensions. 

6. The 𝑛 × 𝑛 zero matrix consists of nothing but zeros. What does it do geometrically?  

7. Find the matrices that carry out the following transformations in ℝ3: 

a) Reflection across the 𝑥𝑦-plane (i.e. the plane 𝑧 = 0)  b) Reflection over the plane 𝑦 = 𝑥. 

c) Rotation by 𝜃 about the 𝑧-axis, counterclockwise from the perspective of one looking down at the origin from 

a point on the positive 𝑧-axis.    

d) The shear that fixes all points in the 𝑥𝑦-plane but moves (0,0,1) to (0.5, 0.5, 1). 

e) The “do nothing” transformation. [See Exercise 2g above.] 

8. Find the matrix that…  

a) reflects ℝ4 across the 3-dimensional hyperplane 𝑤 = 0 (if we call the four dimensions 𝑥, 𝑦, 𝑧, and 𝑤). You’ll 

need to think about what this means in analogy with lower-dimensional cases. 

b) reflects ℝ𝑛 across the (𝑛 − 1)-dimensional hyperplane 𝑥𝑖 = 0 (where the 𝑖th dimension is 𝑥𝑖). 

c) Describe the matrix that does nothing to ℝ𝑛. (The 𝒏 × 𝒏 identity matrix.) 

9. Carry out the following matrix-vector multiplications: 

a) (
1 3
2 4

) (
5
6
)    b)   (

1   0    1
0   1 −1
2   3    0

)(
4

−1
8
)    c) (

1 1    2 −1
0 1 1 0
2 1 0 1
0 −1 2 −1

)(

1
0

−1
2

) 
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Non-square Matrices 
Rationalists, wearing square hats, 

Think, in square rooms… 

 - Wallace Stevens, “Six Significant Landscapes” 
 

So far, we’ve only considered linear transformations that map ℝ𝑛 into itself. True, we’ve seen that some 

such maps can collapse dimensions (when the matrix’s columns are linearly dependent), but the collapse 

still occurs within the ambient space of ℝ𝑛. For example, the map that orthogonally projects each vector 

of ℝ2 onto the horizontal axis crushes all of ℝ2 into a single line, but this line isn’t ℝ; the projection map’s 

output vectors are still very much vectors in ℝ2. They all just happen to have a second component of zero. 

 Some transformations, however, map ℝ𝑛 into a different space altogether, ℝ𝑚. How does this work? 

By following our familiar guiding idea: If we know where the map sends ℝ𝑛’s standard basis vectors, then 

the fates of all the other vectors in ℝ𝑛 will be determined by linearity (which is a shorthand phrase for 

“by the preservation of linear combinations”). Maps of this sort are usually defined directly by a matrix, 

but unlike the matrices we’ve seen so far, these ones aren’t square. Instead, they have 𝑛 columns (one 

for each standard basis vector of ℝ𝑛), each of which has 𝑚 entries (since each column represents a vector 

in the target space of ℝ𝑚). We call such a matrix an 𝒎× 𝒏 matrix. Note the order: 𝑚 rows, 𝑛 columns. 

Example 1. The 3 × 2 matrix 

(
2 −1
0 1
2 1

) 

defines a linear transformation that sends vectors from ℝ2 

(this is clear because it has two columns) to ℝ3 (clear because 

the columns have three entries). The figure at right indicates 

what the map/matrix does: It sends ℝ2’s two standard basis 

vectors to 𝐢′ and 𝐣′, the columns of the matrix. Since these are 

linearly independent vectors, their span is a plane in ℝ3.  

 Matrix-vector multiplication is still defined as the usual weighted sum of the matrix’s columns. 

For example, where does this map send 7𝐢 − 3𝐣? An easy computation yields the answer: 

(
2 −1
0 1
2 1

) (
7

−3
) = 7(

2
0
2
) − 3(

−1
1
1
) = (

𝟏𝟕
−𝟑
𝟏𝟏
).              

Exercises. 

10. In a matrix-vector product involving an 𝑚 × 𝑛 matrix, how many entries must the vector have? 

11. An 𝑚 × 𝑛 matrix determines a linear transformation from where to where? 

12. In the example above, a 3 × 2 matrix maps ℝ2 onto a plane in ℝ3. In similar geometric terms, explain what the 

following matrices do: 

a) (
1 4
2 5
3 6

)         b) (
1 0 2
0 1 3

)        c) (
2 −2   4
3 −3   6

)        d) (
0 0
0 0
0 0

)         e) (

1 5 3
0 2 9
6 7 2
0 0 4

)          f) (
1 2 4 1
1 3 6 1

) 
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Another Look at the Matrix-Vector Product 
 

We’ve defined matrix-vector multiplication as a weighted sum of the matrix’s columns and we know what 

it signifies: the transformation of the given vector by the given matrix (i.e. the linear map that it encodes). 

I’ll now introduce a formula that lets us quickly find any particular entry in a matrix-vector product. This 

simple formula is useful in proofs and speeds up our hand computations of matrix-vector products. 

In the proof that follows, I’ll introduce some basic matrix notation that we’ll often use in the future. 

We symbolize a matrix with an uppercase letter such as 𝐴. To indicate a particular entry in the matrix, we 

use the same letter, but in lowercase, along with two subscripts to indicate the entry’s row and column. 

For example, 𝑎1,3 signifies the entry in matrix 𝐴’s first row and third column. (When the context allows, 

we sometimes minimize eye strain by omitting the comma in the subscript, writing 𝑎1,3 simply as 𝑎13.)  

With this notation in hand, let’s state and prove our “𝑖th-Entry Formula”. 

Matrix-Vector Multiplication (𝒊th-Entry Formula). 

If 𝐴 is a matrix and 𝐯 is a vector, we can compute 𝑨𝐯’s 𝒊th entry with a dot product:*  

𝑨𝐯’s 𝒊th entry = (𝑖th row of 𝐴) ⋅ 𝐯 

Proof. Consider the product of a general 𝑚 × 𝑛 matrix 𝐴 and a general column vector 𝐯: 

(

 
 
 

𝑎1,1 𝑎1,2 ⋯ 𝑎1,𝑛
𝑎2,1 𝑎2,2 ⋯ 𝑎2,𝑛
⋮ ⋮ ⋯ ⋮
𝑎𝑖,1 𝑎𝑖,2 ⋯ 𝑎𝑖,𝑛
⋮ ⋮ ⋯ ⋮

𝑎𝑚,1 𝑎𝑚,2 ⋯ 𝑎𝑚,𝑛)

 
 
 
(

𝑣1
𝑣2
⋮
𝑣𝑛

). 

By matrix-vector multiplication’s definition, the product 𝐴𝐯 is a weighted sum of 𝐴’s columns, 

where the weights are 𝐯’s entries. Thinking a bit about vector addition and scalar multiplication 

reveals that the 𝑖th entry in a weighted sum of column vectors is just… the weighted sum of the 

column vectors’ 𝑖th entries (with the same weights). It follows that the 𝑖th entry of 𝐴𝐯 must be 

𝑣1𝑎𝑖,1 + 𝑣2𝑎𝑖,2 +⋯+ 𝑣𝑛𝑎𝑖,𝑛 , 

which is, as claimed, the dot product of 𝐴’s 𝑖th row with the given vector 𝐯.           ∎ 

Example 1. In the following matrix-vector multiplication the product’s 2nd entry is the dot 

product of the matrix’s second row (in the box) and the vector: 

(
2   7    1
3   1 −1
2   3    0

)(
4

−1
6
). 

Thus, it is 3(4) + 1(−1) + (−1)6 = 𝟓, as you can check by doing the full product the old way.      

 
* This is a purely formal “dot product” - mere shorthand for “sum of the products of corresponding entries in two number lists”. 

That it works out like this is just a happy accident; it has no connection to the actual geometric definition of the dot product.  
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When doing matrix-vector multiplications by hand, it’s quicker to repeatedly use this 𝑖th-entry formula, 

mentally finding the product’s entries one at a time, than it is to write out the weighted sums of columns. 

Make up a few matrix-vector multiplications on your own and do them both ways; you’ll see what I mean. 

Because of this computational ease, I predict that you’ll soon be using the dot product for all your matrix-

vector multiplications, but please, please, please… never forget that matrix-vector multiplication is first 

and foremost a weighted sum of columns, an operation with clear geometric meaning, as we discussed at 

length in this chapter’s first section. In contrast, this section’s formula is just a happy algebraic accident.* 

Because the 𝑖th-entry formula reduces matrix-vector multiplication to dot products, whose properties 

we’ve already proved, it can often serve as a “bridge” in proofs, linking the unknown back to the known. 

For example, let’s use it prove that matrix-vector multiplication can be distributed over vector addition. 

Claim. For any matrix 𝐴 and vectors 𝐯 and 𝐰 for which the following expressions are defined, 

𝐴(𝐯 + 𝐰) = 𝐴𝐯 + 𝐴𝐰 . 

Proof. The expressions on both sides of the equals sign represent column vectors. To prove that 

these two column vectors are equal as claimed, we must show that all their corresponding entries 

are equal. To this end, we note that for all 𝑖, we have that 

𝐴(𝐯 + 𝐰)’s  𝑖th entry 

= (𝑖th row of 𝐴) ⋅ (𝐯 + 𝐰)     (by the 𝑖th-entry formula) 

= (𝑖th row of 𝐴) ⋅ 𝐯 +  (𝑖th row of 𝐴) ⋅ 𝐰  (distributing the dot over vector addition) 

= 𝐴𝐯’s  𝑖th entry  +  𝐴𝐰’s  𝑖th entry   (by the 𝑖th-entry formula) 

= (𝐴𝐯 + 𝐴𝐰)’s  𝑖th entry     (by definition of column vector addition). 

Since all entries of 𝐴(𝐯 + 𝐰) and 𝐴𝐯 + 𝐴𝐰 are equal, the two vectors themselves are equal.    ∎ 

 

Exercises. 

13. Redo each of the matrix-vector products from Exercise 9, but this time, do not write out the weighted sums of 

the columns. Instead, just use the 𝑖th-entry formula to mentally compute the entries of the product. 

14. The scalar multiple of a matrix is defined as you’d expect: Each entry in the matrix is multiplied by the scalar.  

a) If 𝐴 is any old matrix, describe the geometric relationship between the linear maps represented by 𝐴 and 2𝐴.  

b) Prove that for any matrix 𝐴 and scalar 𝑐, the following holds: 𝐴(𝑐𝐯) = 𝑐(𝐴𝐯). That is, scalar multiples can be 

‘pulled through’ matrix-vector multiplication. [Hint: Use the ideas from the proof of the claim above.] 

c) Prove that matrix-vector multiplication preserves linear combinations: 𝐴(𝑐𝐯 + 𝑑𝐰) = 𝑐(𝐴𝐯) + 𝑑(𝐴𝐰). 

[Hint: All the hard work has been done already. No need to reinvent the wheel.] 

15. If 𝐴 is a 5 × 5 matrix, describe the vector 𝐯 we’d need to use as an input so that the output 𝐴𝐯 would be…  

a) 𝐴’s 5th column.  b) The sum of 𝐴’s 2nd and 3rd columns.  c) 3 times 𝐴’s 4th column. 

d) 3 times 𝐴’s 4th column minus 5 times 𝐴’s 1st column. 

The problem’s moral: We can use matrix-vector multiplication to form linear combinations of a matrix’s columns. 

 
* Regrettably, many linear algebra books define matrix-vector multiplication in terms of this shortcut formula – long before they 

even discuss linear transformations. As a result, students end up memorizing a strange rule without any hope of understanding 
why matrix-vector multiplication exists in the first place. 
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Matrix Multiplication 
It’s a mistake to think the practice of my art has come easily 

to me. I assure you, dear friend, no one has given so much 

care as I to the study of composition. 

 - Mozart, to conductor Johann Baptist Kucharz 

 

As you learned long ago, one way to build new functions from old ones is through function composition. 

For example, if we compose the squaring function 𝑓(𝑥) = 𝑥2 with the doubling function 𝑔(𝑥) = 2𝑥, we 

will obtain, depending on the order of composition, either 𝑓(𝑔(𝑥)) = 4𝑥2, or 𝑔(𝑓(𝑥)) = 2𝑥2.  

We can also compose linear maps. Composing two yields a third, which of course has its own matrix. 

We wish to understand how the matrices of the two “parent maps” relate to the matrix of their child, the 

composite map. We’ll begin with an example of finding a composite map’s matrix from first principles. 

Then, after we establish an algebraic theorem about matrix multiplication, we’ll return to the same 

example and view it from another perspective. 

Example 1. Let 𝑅 represent a 90° counterclockwise rotation about the origin, and let 𝐹 represent 

a flip (i.e. a reflection) across the horizontal axis. A little thought yields 

𝑅 = (
0 −1
1 0

)   and   𝐹 = (
1 0
0 −1

). 

Let us consider the composite map that first rotates, then flips. We will call this map’s matrix 𝐹𝑅. 

Note the “right-to-left” order: 𝐹𝑅 means reflect first, then flip. This isn’t as odd as it might seem. 

It’s analogous to function notation, where 𝑓(𝑔(𝑥)) means first apply 𝑔, then 𝑓. 

 What does matrix 𝐹𝑅 look like? We can determine this matrix’s columns in the usual way: 

Rotating 𝐢 by 90° then flipping the result over the horizontal axis turns it into −𝐣. Rotating 𝐣 by 90° 

and flipping the result yields −𝐢. Recording these transformed images in a new matrix, we obtain  

𝐹𝑅 = (
0 −1

−1 0
).                  

We human beings understand that the three matrices above are related through a series of geometric 

operations that we can visualize. But a computer – a soulless box of chips and wires – can understand 

none of this. It can only follow orders. Can we program a computer to obtain 𝐹𝑅 from 𝐹 and 𝑅 in a purely 

algebraic way, by following simple instructions that don’t require thinking about rotations and reflections? 

We can. By definition of function composition, we know that (𝐹𝑅)𝐢 = 𝐹(𝑹𝐢), and the latter expression 

can guide us as we program a computer to compute 𝐹𝑅’s first column mindlessly: 

𝐹(𝑅𝐢) = (
1 0
0 −1

)((
0 −1
1 0

)(
1
0
)) = (

1 0
0 −1

) (
0
1
) = (

0
−1
). 

You and I can understand the meaning of what the computer is doing here: It first determines where 𝐢 is 

mapped by the rotation matrix, and then determines where this transformed image of 𝐢 is sent by the flip. 

But this means nothing at all to the computer, which just blindly follows orders, doing lots of arithmetic – 

adding, subtracting, and multiplying numbers – and storing the results where we tell it to store them. 
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Because notation such as 𝐹𝑅 looks like multiplication, we will in fact call it matrix multiplication. 

In a moment, we’ll have an algorithm for doing matrix multiplication quickly. But never let the algorithm 

distract you from the core meaning: Matrix multiplication corresponds to the composition of linear maps. 

That is why we are interested in it in the first place. Every instance of matrix multiplication can be thought 

of as the composition of two linear transformations. Never forget.  

Now we’ll derive two formulas for the product 𝐴𝐵 of two matrices 𝐴 and 𝐵. They will give us two 

different perspectives on a matrix product: a column perspective (often useful in proofs) and an entry 

perspective (useful in proofs, and also for computing matrix products by hand.)  

 

 

 

 

 

 

 

 

Proof.  

We must show that 𝐴𝐵’s 𝑗th column is 𝐴𝐛𝒋 for all 𝑗. To this end, we note that, for any 𝑗, we have 

𝐴𝐵’s 𝑗th column 

= 𝐞𝒋’s image under the composite map*  (by definition of a linear map’s matrix) 

= 𝐴(𝐵𝐞𝒋)          (by definition of 𝐴𝐵) 

= 𝐴𝐛𝒋          (by definition a linear map’s matrix)       ∎ 

We’ll use this column perspective right away – to derive the entry perspective!  

 

 

 

 

 

Proof. 

𝐴𝐵’s 𝑖𝑗th entry 

= the 𝑖th entry in 𝐴𝐵’s 𝑗th column  (definition of 𝑖𝑗th entry) 

= the 𝑖th entry in 𝐴𝐛𝒋     (column perspective of matrix multiplication) 

= (𝐴’s 𝑖th row) ⋅ 𝐛𝒋      (𝑖th-entry formula for matrix-vector multiplication) 

= (𝐴’s 𝑖th row) ⋅ (𝐵’s 𝑗th column)  (definition of 𝐛𝒋)             ∎ 

 
* Recall from Chapter 1 that in ℝ𝑛 (when 𝑛 > 3), we call the standard basis vectors 𝐞1, 𝐞2, … , 𝐞𝑛.  

† This is another purely formal “dot product” – a sum of products of corresponding entries in two number lists – with no real 
connection to the dot product’s geometric definition.  

Matrix Multiplication (Entry Perspective).  

If 𝐴 and 𝐵 are matrices, we can compute 𝐴𝐵’s 𝒊𝒋th entry 

(that is, its entry in row 𝑖, column 𝑗) with a dot product:† 

𝐴𝐵’s 𝑖𝑗th entry = (𝐴’s 𝑖th row) ⋅ (𝐵’s 𝑗th column) 

Matrix Multiplication (Column Perspective).  

If 𝐴 and 𝐵 are matrices, then 𝐴𝐵 looks like this: 

𝐴𝐵 = (

| ⋯ |
𝐴𝐛𝟏 ⋯ 𝐴𝐛𝒏
| ⋯ |

), 

where 𝐛𝒋 represents 𝐵’s 𝑗th column. 
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From the ‘entry perspective’, matrix multiplication is a mere algorithmic grind in which we crank out 

the product one entry at a time, doing the arithmetic in our heads. To see how this works out in practice, 

let’s redo an earlier example. In Example 1, we composed a rotation and a flip, finding the composition’s 

matrix from first principles: We thought geometrically about where the composition would map 𝐢 and 𝐣, 

and then we made their transformed images our composition matrix’s columns. But now we can redo this 

problem, producing the composition’s matrix in seconds. We begin by writing down our two matrices, 

along with an empty matrix – soon to be filled in – to represent their product: 

𝐹𝑅 = (
1 0
0 −1

) (
0 −1
1 0

) = ( ). 

From here, our task is nothing but simple mental arithmetic: 𝐹𝑅’s top left entry (that is, row 1, column 1) 

will be, according to the entry perspective, the dot product of 𝐹’s row 1 and 𝑅’s column 1. 

𝐹𝑅 = (
1 0
0 −1

) (
0 −1
1 0

) = ( ). 

This dot product is (1)(0) + (0)(1) = 0, so we put a 0 in the top left corner of our product matrix: 

𝐹𝑅 = (
1 0
0 −1

) (
0 −1
1 0

) = ( 0 ). 

Doing the appropriate dot products for the three remaining entries, we end up with, as you should verify, 

𝐹𝑅 = (
1 0
0 −1

) (
0 −1
1 0

) = (
0 −1

−1 0
). 

Naturally, this is the same matrix we produced in Example 1, but now we’ve obtained it by mindlessly 

turning an algebraic crank, heedless of the meanings of any of the matrices involved. Reducing matrix 

multiplication to an algorithm frees us to concentrate on larger things, and in that sense, it is a blessing… 

provided that we never forget matrix multiplication’s underlying meaning, which is now hidden neatly 

under the hood: Matrix multiplication corresponds to the composition of linear maps.  

While Example 1’s matrices are here on the page, let’s go ahead and compute 𝑅𝐹, too: 

𝑅𝐹 = (
0 −1
1 0

) (
1 0
0 −1

) = (
0 1
1 0

). 

Note well: 𝑅𝐹 ≠ 𝐹𝑅. We’ve discovered something important:  Matrix multiplication is not commutative. 

This may sound exotic, but on further reflection, it should feel completely natural to you – and to anyone 

who knows not just how but why we multiply matrices. Matrix multiplication corresponds to the 

composition of linear maps, and everyone knows that when we compose two functions, the order matters 

(as this section’s first paragraph reminded us). Hence, order must matter in matrix multiplication, too. 

 On the other hand, matrix multiplication is associative. An algebraic proof of this is unilluminating, 

but we don’t need one. We can see why it is true simply by thinking about matrix multiplication’s meaning. 

If we think of each matrix as “doing something” – namely, carrying out the corresponding map – then 

𝐴(𝐵𝐶) means “do 𝐶 then 𝐵… then do 𝐴.” On the other hand, (𝐴𝐵)𝐶 means “do 𝐶… then do 𝐵 then 𝐴.” 

Obviously, the result is the same either way, so it follows that 𝐴(𝐵𝐶) = (𝐴𝐵)𝐶, as claimed. 
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Exercises. 

16. Carry out the following multiplications using the ‘entry perspective’ on matrix multiplication: 

a) (
1 3
2 1

) (
0 2

−1 1
)  b) (

0 2
−1 1

) (
1 3
2 1

)   c) (
1 0 1
0 1 0
1 0 1

)(
0 2 0
1 0 3
0 4 0

) 

17. Although matrix multiplication is noncommutative in general, certain specific pairs of matrices 𝐴 and 𝐵 have the 

property that 𝐴𝐵 = 𝐵𝐴. Think of some specific examples of pairs of 2 × 2 matrices like this. 

[Hint: Think geometrically. Think of linear maps that yield the same result can be done in either order.] 

18. The 𝑛 × 𝑛 identity matrix, which you met in Exercise 8c, has 1s on its “main diagonal” (upper left to lower right) 

and 0s elsewhere. It is denoted by the letter 𝐼. Explain why 𝑨𝑰 = 𝑰𝑨 = 𝑨 holds for all 𝑛 × 𝑛 matrices 𝐴. 

19. In Exercise 11, you saw that an 𝑚 × 𝑛 matrix represents a linear map from ℝ𝑛 to ℝ𝑚. (Note the order!)  

a) Suppose 𝐴 is a 5 × 2 matrix, and 𝐵 is a 2 × 3 matrix. Explain why (in terms of the underlying linear maps) the 

matrix 𝐴𝐵 is defined, but 𝐵𝐴 is undefined. 

b) What are the dimensions of matrix 𝐴𝐵 in the previous part? It represents a linear map from where to where? 

c) Now suppose 𝐶 is a 3 × 5 matrix. Given the dimensions of 𝐴 and 𝐵 above, is the matrix product 𝐵𝐶𝐴𝐵 defined? 

If so, find its dimensions. 

20. Let 𝑀 = (
1 2
3 0

−2 1
) and 𝑁 = (

2 −3 1
1 1 0

). Find the following (if they are defined): 𝑀𝑁, 𝑁𝑀, 𝑀2, 𝑁2, 𝑁𝑀𝑁. 

21. Consider the linear map of the composition that rotates points in the plane by 120° counterclockwise about 

the origin and then reflects the results over the horizontal axis. 

a) Find its matrix.     b) Where does this operation send the point (3, 8)? 

c) If we call this composition’s matrix 𝑀, find 𝑀2. Why does the matrix that you found make intuitive sense? 

22. Prove that scalar multiples can be ‘pulled through’ matrix multiplication: (𝑐𝐴)(𝑑𝐵) = (𝑐𝑑)𝐴𝐵. 

23. The matrix that undoes the action of a square matrix 𝐴 is called the inverse matrix of 𝐴, and is denoted 𝐴−1. 

Thus, by definition, 𝐴−1 is a matrix such that 𝐴−1𝐴 = 𝐼 = 𝐴𝐴−1 (where 𝐼 is the identity matrix).* In this exercise, 

you’ll play with the idea of inverse matrices and learn two important computational facts about them. 

a) Let 𝐴 be the 2 × 2 matrix of a 90° rotation counterclockwise about the origin. Describe what 𝐴−1 does. Then 

find 𝐴−1. Check your work by grinding out 𝐴−1𝐴 and 𝐴−1𝐴. Is the product what you expected? 

b) Only square matrices can have inverses. Explain why. 

c) Prove that matrix inverses are unique. (i.e. if 𝐵 and 𝐶 are inverses of 𝐴, then 𝐵 = 𝐶.) 

d) Not every square matrix has an inverse. Explain why, for example, the 2 × 2 zero matrix (see Exercise 6), which 

crushes the whole plane down into the origin, is not invertible. 

e) Important fact 1. If 𝐴 and 𝐵 are two invertible matrices, then (𝑨𝑩)−𝟏 = 𝑩−𝟏𝑨−𝟏. Note that reversal of order! 

(You can grasp this result intuitively by thinking of 𝐴 as “put on your shoes” and 𝐵 as “put on your socks”. With 

those in mind, state the meanings of 𝐴−1, 𝐵−1, 𝐴𝐵, 𝐵𝐴, (𝐴𝐵)−1,  and 𝐵−1𝐴−1. The equality will make sense.)  

Prove the result formally by showing that 𝐵−1𝐴−1 satisfies the definition of 𝐴𝐵’s inverse. 

f) Let 𝑀 be the matrix in Exercise 21. Find 𝑀−1 by using Part D. Check your work by finding 𝑀−1 another way. 

g) Important fact 2: If 𝐴 is an invertible matrix and 𝑐 is a scalar, then (𝒄𝑨)−𝟏 = 𝒄−𝟏𝑨−𝟏. Explain why. 

 
 

* If we wish to show that a matrix 𝐵 is in fact 𝐴−1, we must – by this definition – verify two separate things: 𝐵𝐴 = 𝐼 and 𝐴𝐵 = 𝐼. 
But we’ll prove later (Ch. 5, Exercise 12) that each of these things implies the other, so to verify both, we just need to verify one. 
This is tricky to prove rigorously, but it’s intuitively plausible for those (like you!) who understand that matrix multiplication is a 
kind of composition; if 𝐵 is the map that “undoes” whatever 𝐴 does, then it makes sense that 𝐴 is the map that “undoes” 𝐵. 



The Dark Art of Linear Algebra  Chapter 3: Linear Transformations and Matrices 
 

49 

Matrix Addition and Transposition 
Algebra which cannot be translated into good English 

and sound common sense is bad algebra. 

 - William Kingdon Clifford, The Common Sense of the Exact Sciences (Chapter 1, Section 7) 

 

If matrices 𝐴 and 𝐵 have the same dimensions, we define their matrix sum 𝐴 + 𝐵 as the matrix we obtain 

by adding the corresponding entries in 𝐴 and 𝐵. Thus, for example, 

(
1 2 3
4 5 6

) + (
1 3 5
2 4 6

) = (
2 5 8
6 9 12

). 

Matrix subtraction is defined analogously. Compared to matrix multiplication, matrix addition is boring; 

it lacks a universal geometric meaning, and thus cannot easily be translated into “sound common sense”. 

That said, it is not “bad algebra”. Adding and subtracting matrices enriches matrix algebra in subtle ways, 

usually by simplifying linear algebraic algorithms, which is no small thing. We’ll see, for example (in 

Chapter 7) that our algorithm for finding a matrix’s eigenvalues will involve matrix subtraction. It will also 

involve scaling a matrix, an operation you met in Exercise 14. Moreover, there are some instances in which 

matrix addition does have a tangible interpretation, as you’ll see in Exercise 24. 

The transpose of any matrix 𝑀 is the matrix whose columns are 𝑀’s rows (taken in the usual order). 

The symbol for 𝑀’s transpose is 𝑀𝑇. Thus, for example, if 

𝑀 = (
1 2 3
4 5 6

),     then we have     𝑀𝑇 = (
1 4
2 5
3 6

). 

Transposes assume greater prominence as one moves deeper into linear algebra. In time, we’ll see how 

transposes relate to both inverse matrices and symmetric matrices, which you’ll first meet in exercise 27. 

As with matrix addition, it’s difficult to appreciate transposition’s value at the outset, since it lacks a clear 

geometric interpretation. Still, it’s good to make its acquaintance early on. In the exercises that follow, 

you’ll develop a few simple algebraic properties of the transpose, which we’ll use later. 
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Exercises. 

24. A grayscale image, such as the one at right, is ultimately an array of pixels. This particular 

one, for example, is composed of over 100,000 pixels: It is 328 pixels high and 314 wide. 

When you or I look at it, we behold the King of Rock and Roll and the King of the Beasts. 

In contrast, a sufficiently tiny bug crawling on the image would see a mere patchwork of 

shaded squares. In still further contrast, a computer would “see” such an image as a 

matrix. Each pixel in the grayscale image is one of 256 possible shades of gray in a black-

to-white spectrum. The different shades in the spectrum are assigned numerical codes, 

the extreme values being Black = 0 and White = 255. Throughout the range, lower codes 

correspond to darker shades, higher codes to lighter ones. A computer would “know” this image as a 328 × 314 

matrix, whose 102,992 entries are the codes for the shades of gray of the pixels in the corresponding position. 

For example, the first several rows of this giant matrix would consist of 255s (or numbers close to 255) since the 

top of the image is black. Call this matrix 𝑀. As we’ll now see, we can alter the image by doing matrix arithmetic.  

a) Roughly speaking, what would the image corresponding to the matrix 2𝑀 look like? (Assume throughout this 

exercise that any code greater than 255 is interpreted as if it were 255, and any negative code as if it were 0.) 

b) What about . 5𝑀?           

c) What about 𝑀𝑇?           

d) What about 255𝑈 −𝑀, where 𝑈 is the 328 × 314 matrix consisting entirely of 1s. 

e) What about 𝑀𝐹, where 𝐹 is the 314 × 314 matrix with 1’s on its off diagonal (bottom left to top right) and 

0’s elsewhere. [Hint: The ‘column perspective’ on matrix multiplication should help here.] 

f) What about 𝐹𝑀?           

g) What about 𝑀′, the matrix that remains after removing the bottom 14 rows of 𝑀? 

h) What about 𝐹𝑀′?  

25. Matrix addition obeys the expected distributive properties, as you should now prove: 

a) (𝐴 + 𝐵)𝐯 = 𝐴𝐯 + 𝐵𝐯     [Hint: Explain why the sides’ 𝑖th entries are equal.] 

b) (𝐴 + 𝐵)𝐶 = 𝐴𝐶 + 𝐵𝐶    [Hint: Explain why the sides’ 𝑖𝑗th entries are equal.] 

c) 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶 

26. In this problem, you’ll learn a few algebraic facts about transposes. For parts b – d, your best strategy for the 

proof is to explain why the sides’ 𝑖𝑗th entries are equal. 

a) A curious and occasionally useful fact: We can compute a dot product with matrix multiplication, one factor 

of which involves a transpose. Namely, if 𝐯 and 𝐰 are column vectors, then 

𝐯 ⋅ 𝐰 = 𝐯  𝑇𝐰. 

Explain why. [Note: To make this work, we blur the distinction between a real number and a 1 × 1 matrix.] 

b) The transpose of a sum is the sum of the transposes: (𝑀 + 𝑁)𝑇 = 𝑀𝑇 + 𝑁𝑇. Prove it. 

c) Scalar multiples can be pulled through a transpose: (𝑐𝑀)𝑇 = 𝑐(𝑀𝑇). Prove it. 

d) The transpose of a product has an important order-reversing property: (𝑀𝑁)𝑇 = 𝑁𝑇𝑀𝑇. Prove it. (The order 

reversal should remind you of what you learned about matrix inverses in Exercise 23c.) 

e) Explain why the previous property extends to 3 or more matrices, so that, for example, (𝐴𝐵𝐶)𝑇 = 𝐶𝑇𝐵𝑇𝐴𝑇. 

27. A matrix 𝐴 is said to be symmetric if 𝐴 = 𝐴𝑇. 

a) Can a non-square matrix be symmetric? If so, give an example. If not, why not?  

b) Write down some symmetric matrices of various sizes. 

c) Make up any old 2 × 3 matrix, 𝑀. Compute 𝑀𝑀𝑇. What do you notice? Now compute 𝑀𝑇𝑀. Magic, no?  

d) In fact, given any matrix whatsoever, its product with its transpose (in either order) will always be symmetric. 

Explain why. (The cleanest - but not the only - way to prove this uses the property you proved in Exercise 26d.) 
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Abstract Linear Algebra: A Trailer 
There is no branch of mathematics, however abstract, which 

may not someday be applied to phenomena of the real world. 

 - Nicolai Ivanovich Lobachevski 

 

We can extend the scope and power of linear algebra by considering it from a higher level of abstraction. 

Abstraction, however, comes at a cost: diminished intuition. Accordingly, too much abstraction is usually 

a poor choice for one’s initial foray into a subject. Part of the goal of this book is to help you develop such 

a strong intuition for linear algebra in a concrete setting – where vectors are arrows – that you’ll be able 

to appreciate abstract linear algebra, where “vectors” can be all sorts of unexpected things. And even 

though we’ve just begun our journey through this book, we’ve made enough progress already to warrant 

a brief ascent into the abstract skies – just enough to give you a glimpse of what linear algebra looks like 

from a higher perspective. Consider this section a trailer for this course’s sequel. Later in the book, I may 

refer in passing to this section, but it is not essential for what follows, and may be skipped.  

What are vectors? This is the question with which we began Chapter 1. In the abstract perspective, 

we simply say that a vector is any element of a vector space, which itself can be a set of any kind so long 

as it is closed under addition and multiplication by scalars.* Naturally, the spaces in which we’ve worked 

(ℝ𝑛 and its subspaces) are all examples of vector spaces, but many other sets qualify as well.  

For example, 𝒫3, the set of all polynomials of degree 3 (or less) with real coefficients, is a vector space. 

After all, this set is clearly closed under addition (the sum of any two such polynomials is another one), 

and multiplication by scalars (multiplying a polynomial by a scalar never increases its degree). Thus  𝒫3 is 

indeed a vector space, in which the “vectors” are polynomials. Another example: 𝑀3×3, the set of all 3 × 3 

matrices, which is obviously closed under matrix addition and under multiplication by scalars. Another 

notable example comes from the study of differential equations: The set of all solutions to any specific 

linear differential equation (such as 3𝑦′′ + 2𝑦′ + 5 = 0) is a vector space. 

For the rest of this section, I’ll stick with 𝒫3 for some concrete examples.  

Defined abstractly, a linear transformation is a function defined on a vector space that preserves 

linear combinations. In symbols, 𝑇 is a linear transformation of a vector space if 𝑇(𝐯 + 𝐰) = 𝑇(𝐯) + 𝑇(𝐰) 

and 𝑇(𝑐𝐯) = 𝑐𝑇(𝐯) for all scalars 𝑐 and all vectors 𝐯,𝐰 in the space. 

One example of a linear transformation of 𝒫3 is differentiation. This might be easier to see if we signify 

the operation of taking a derivative with a 𝐷, rather than the usual prime. For in that case, we have 

𝐷(𝑝(𝑥) + 𝑞(𝑥)) = 𝐷(𝑝(𝑥)) + 𝐷(𝑞(𝑥)) and 𝐷(𝑐𝑝(𝑥)) = 𝑐𝐷(𝑝(𝑥)) for any polynomials 𝑝(𝑥) and 𝑞(𝑥), 

as you learned in your first calculus class. Indeed, you may have even learned in that class that these two 

properties (derivative of a sum is the sum of the derivatives, constant multiples can be pulled through the 

derivative) are called the derivative’s “linearity properties”. Now you know the source of that name. 

All of Chapter 2’s concepts (linear independence, span, basis, etc.) can be defined abstractly so that 

they can apply to any vector space. For example, consider the four simple “vectors” 𝑥3,  𝑥2, 𝑥, 1 in 𝒫3. 

Linear combinations of these four vectors have the form 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑. Ah, but every vector in 𝒫3 

has that form, so that means that these four vectors span 𝒫3. It’s also clear that these four vectors are 

linearly independent of each other (each lies outside the span of the other three). Consequently, they 

constitute a basis for 𝒫3. In fact, we call them 𝒫3’s standard basis vectors. Moreover, by using a shorthand 

 
* There’s a bit more to the abstract definition of a vector space but the details are immaterial in this overview. 
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column vector notation, we can indicate vectors in 𝒫3 without explicitly writing out 𝒫3’s standard basis 

vectors. For example, consider 𝐩 = 2𝑥3 − 4𝑥2 + 8𝑥 + 3 in 𝒫3. We can rewrite this as the column vector 

(

2
−4
8
3

). 

Every linear map of 𝒫3 (or any other vector space) can be represented by a matrix, whose columns 

indicate the transformed images of the vector space’s standard basis vectors.  For example, differentiation 

sends our first standard basis vector, 𝑥3, to 3𝑥2, so the first column of the differentiation matrix will be 

(

0
3
0
0

). 

In fact, the full differentiation matrix will be, as you should verify, 

𝐷 = (

0 0 0 0
3 0 0 0
0 2 0 0
0 0 1 0

). 

And just as we used rotation matrices to carry out rotations in ℝ2, we can use this differentiation matrix 

to carry out differentiation in 𝒫3. For example, we could differentiate 𝐩 = 2𝑥3 − 4𝑥2 + 8𝑥 + 3 as follows: 

𝐷𝐩 = (

0 0 0 0
3 0 0 0
0 2 0 0
0 0 1 0

)(

2
−4
8
3

) = (

0
6

−8
8

). 

That last column vector corresponds to 6𝑥2 − 8𝑥 + 8, which is of course the correct expression. We’ve 

taken a derivative by means of matrix-vector multiplication! 

Since every vector in 𝒫3 can be indicated by a column vector with four entries, 𝒫3 is intimately related 

to ℝ4, which of course has the same property. We say that those two vector spaces are isomorphic, 

meaning that although their elements look very different on the surface (arrows in four-dimensional space 

in one case, polynomials of degree three or lower in the other), the two vector spaces have the same basic 

structure. Accordingly, we can carry insights about one space over to the other. Every finite-dimensional 

real vector space, in fact, turns out to be isomorphic to ℝ𝑛 for some value of 𝑛. It is this fact that justifies 

concentrating exclusively on ℝ𝑛 in a first linear algebra course. Everything you learn about linear algebra 

in ℝ𝑛 can be used later to understand what seem to be radically different vector spaces.



 

 

 

 

 

 

 

Chapter 5 

The Determinant
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The Determinant: Definition 
Once upon a midnight dreary, while I pondered, weak and weary, 

over many a quaint and curious volume… 

 - Edgar Allen Poe, “The Raven” 

 

The determinant’s definition will initially look mysterious, but the clouds will soon clear. 

I’ve used the term “box” to encompass parallelograms (in ℝ2), parallelepipeds (in ℝ3), and their higher-

dimensional analogues (parallelotopes). Similarly, I’ve used “volume” to cover parallelograms’ areas 

(in ℝ2), parallelepipeds’ volumes (in ℝ3), and parallelotopes “hypervolumes” (in the appropriate spaces).  

As for “orientation”, recall that in Chapter 3 we considered a drawing of a right hand in ℝ2, and we 

observed that certain maps (such as rotations) preserve the right hand’s right-handedness, while others 

(such as reflections) transform it into a left hand. An orientation-reversing map of this latter sort sends 

the entire plane through the looking glass. This can occur in spaces of any number of dimensions. How 

does such a thing arise? Recall that any linear map of ℝ𝑛 is determined by its action on the standard basis 

vectors, since they specify the space’s axes and their associated “grid”. The linear map then transforms 

the space by transforming the grid, rotating and stretching the basis vectors and the axes they determine. 

If, while undergoing this transformation, one axis crosses through the others’ span, this will cause an 

orientation reversal of the space. If two such crossings occur, the two reversals will undo one another, 

with a net effect that orientation is preserved. Indeed, the orientation is preserved or reversed according 

to whether there are an even or odd number of such “axis crossings” during the transformation.   

Example 1. The figure at right shows the map whose matrix is  

𝐴 = (
5/4 1/2

−1/4 3/2
). 

The area of the “box” in which the hand is drawn turns out to be 2 units2. 

(Don’t worry about how to determine that for now.) This map obviously 

preserves orientation (the right hand remains a right hand), so det 𝐴 = 2.  

Example 2. The figure at right shows the map whose matrix is  

𝐴 = (
−2 −1
0 2

 ). 

In this case, the area of the “box” is clearly 4 units2. Moreover, this map 

reverses orientation (the right hand is now a left hand), so det 𝐴 = −4.         

Note the reason for the orientation reversal in Example 2: Dragging 𝐢 and 𝐣 to their new positions 𝐢′ and 𝐣′ 

requires us to pass one basis vector through the other’s span – or to put it another way, it requires us to 

pass axis through the other. 

Definition. If 𝐴 is a square 𝑛 ×  𝑛 matrix, its determinant (det𝐴) is the real number whose… 

➢ Magnitude is the 𝑛-dimensional volume of the “box” in ℝ𝑛 that 𝐴’s columns determine. 

➢ Sign is positive if 𝐴 preserves orientation, and negative if 𝐴 reverses orientation.  
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Example 3. The puzzled man standing on the box at left and scratching his head with his left hand 

wonders if there are linear maps that would 

make him scratch with his right hand instead. 

Yes, there are: Any orientation-reversing map 

will do the trick. The figure at right shows one. 

And if the volume of the box at right is, say, 

30% greater than that of the box at left, then 

this map’s determinant must be −𝟏.𝟑.           

A good visualization exercise is to imagine the original axes from Example 3’s left figure morphing into 

those at right. One way is to first imagine 𝐢 and 𝐣 being transformed (through rotations and stretches) into 

their new positions, carrying along the plane that they span. Then, once they’ve arrived, imagine 𝐤 being 

moved down to its new position. At some point during this two-stage transformation, the third axis will 

have to pass through the plane spanned by the first two, yielding the orientation reversal. 

Example 4 (Shears). A shear is a map that moves just one standard basis vector (call it the 𝑚th), 

and in a way that its 𝑚th coordinate remains 1. 

(It fixes all the other standard basis vectors.) 

The left figure shows a shear in ℝ2 that moves 

only 𝐣. The right figure depicts a shear in ℝ3 

that moves only 𝐤, pushing the tip of 𝐤′ over 

to the point (−0.5, 0.2, 1). Observe that the 

third coordinate is still 1, as required.    

Shears will be important later in this chapter, where they’ll help us find a method for 

computing any matrix’s determinant. For now, however, we just want to recognize what a shear’s 

matrix looks like, and understand what the determinant of any shear matrix must be. 

The first part is easy: It follows immediately from a shear’s definition that a shear matrix looks 

like an identity matrix in which someone has tampered with the zeros in one column, changing at 

least one of them to a nonzero value. Thus, the two shears depicted above are represented by 

these matrices: 

(
 1 . 5 
 0 1 

)          and           (
1       0 − .5
0       1 − .2
0       0 1

). 

Similarly, the following matrices represent other shears: 

𝑆1 = (
1 0

−1 1
),          𝑆2 = (

1 1 0
0 1 0
0 0 1

),          𝑆3 = (

1 0 0 1
0 1 0 0
0 0 1 6
0 0 0 1

) 

You can draw pictures of how 𝑆1 and 𝑆2 transform the standard grids of their respective spaces. 

Shear 𝑆3 is in ℝ4, so obviously we can’t draw it, but you might still enjoy thinking about it. (For 

example, if you were a three-dimensional being living in the hyperplane 𝑤 = 0 with no concept 

of the fourth spatial dimension in which your world is embedded, would you notice it if the four-

dimensional world were subjected to that shear?) 

Shear matrices are thus easy to recognize. But what can we say about a shear’s determinant? 
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 The answer: The determinant of every shear matrix is 𝟏. 

Proof: The original box and the sheared box have the same base 

(the one determined by the fixed standard basis vectors) and, 

relative to that base, they also have the same height (1 unit). 

Moreover, all the boxes’ corresponding cross sections (taken at 

the same height and parallel to their common base) are equal, 

since these cross sections are both obviously equal to the boxes’ shared base. Thus, by Cavalieri’s 

Principle, the boxes have the same volume. Moreover, shears obviously preserve orientation, so 

it follows that the determinant of every shear is 1, as claimed.                                                             

Let’s make a quick geometric observation. The boxes with which we’re concerned in this section 

should, in principle, lend themselves to simple volume calculations because any box of this sort can be 

understood as a slanted stack of copies of the box’s base, piled up into another dimension. A 

parallelogram is a stack of equal line segments; a parallelepiped is a stack of equal parallelograms; a four-

dimensional parallelotope is a stack of equal parallelepipeds; and so forth. This being so, any such box’s 

“volume” is simply its height times its base’s “volume”. We can use this simple observation to derive a 

formula for the determinant of any upper triangular matrix, as we’ll see next. 

An upper triangular matrix is a square matrix whose entries below the main diagonal are all zeros. 

(Lower triangular matrices are defined analogously.) Here are some examples: 

𝐴 = (
5 6
0 9

) ,        𝐵 = (
4 1 5
0 2 1
0 0 3

) ,        𝐶 = (

3 1 4 1
0 5 9 2
0 0 6 0
0 0 0 3

). 

Every upper triangular matrix generates a grid of boxes whose volumes 

are easily computed. For example, consider matrix 𝐴. Its columns generate 

a parallelogram whose base, lying on the 𝑥-axis, is 5 units, and whose 

height is 9 units. Its area is thus 𝟓 ∙ 𝟗 = 45 units2. (Note that the first entry 

in 𝐴’s second column has no effect on the parallelogram’s area; had it 

been 307 instead of 6, the parallelogram’s area would still be 45 units2.) 

Since this map clearly preserves orientation (𝐢 and 𝐣 need not cross one 

another to reach their new positions 𝐢′ and 𝐣′), we may conclude that  

det (
𝟓 6
0 𝟗

) = 𝟓 ∙ 𝟗 = 45. 

Will the determinant of every 2 × 2 upper triangular matrix be the product of its two diagonal entries? 

Yes! If both diagonal entries are positive, the same argument we just used will still hold. (Make up some 

examples to convince yourself of this!) If one diagonal entry is negative, then 𝐢′ and 𝐣′ will be oriented in 

such a way that the map reverses orientation, and hence the determinant will be negative; but the product 

of the diagonal entries will also be negative, so all’s well (see Exercises 3a & 3b). If both diagonal entries 

are negative, vectors 𝐢′ and 𝐣′ will be oriented in such a way that the map preserves orientation; of course, 

in that case, the diagonal entries’ product will be positive, so all’s well in that case, too (see Exercise 3c). 

Finally, if either diagonal entry is zero, the “parallelogram” collapses into something without area (either 

a line segment or a point), so the determinant will be zero, as will the diagonal entries’ product. 
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So far so simple. But can the determinant by computed so simply for all upper triangular matrices, 

or only for 2 × 2 ones? 

 Let’s turn our attention to a 3 × 3 example, matrix 𝐵 above. 

Its first two columns lie conveniently in the 𝑥𝑦-plane. (It’s easy to 

see that this will hold for every 3 × 3 upper triangular matrix.) 

These two columns generate a parallelogram whose area, by the 

logic we employed for our 2 × 2 matrix 𝐴, must be 4 ∙ 2 units2. 

This parallelogram is the base of the parallelepiped generated by 

all three columns, the third of which gives the parallelepiped’s 

height: 3 units. This height depends, of course, exclusively on the 

third column’s third entry. Consequently, the parallelepiped’s 

volume must be (4 ∙ 2) ∙ 3 units3, and since orientation is clearly 

preserved here, the determinant is positive. Thus, 

det (
𝟒 1 5
0 𝟐 1
0 0 𝟑

) = 𝟒 ∙ 𝟐 ∙ 𝟑 = 24. 

Thus, our determinant of a 3 × 3 upper triangular matrix is still just the product of its diagonal entries. 

And indeed, the same basic argument shows that the determinant of every 3 × 3 upper triangular matrix 

is simply the product of its diagonal entries. 

We can’t depict the 4 × 4 case, but we can still understand it. Consider the upper triangular matrix 𝐶 

above. Being upper triangular, its first column lies on the 𝑥-axis, and its second lies in the 𝑥𝑦-plane. In that 

plane, the first two columns generate a parallelogram of base 3 and height 5 – and thus of volume 3 ⋅ 5. 

That parallelogram, in turn, is the base of the parallelepiped in the 𝑥𝑦𝑧-hyperplane that is generated by 

𝐶’s first three columns. It has a height of 6, so its volume is (3 ∙ 5) ∙ 6. This parallelepiped is also the base 

of the four-dimensional parallelotope generated by all four of 𝐶’s columns. The parallelotope has a height 

of 3, the fourth column’s fourth entry. Consequently, its hypervolume is (3 ∙ 5 ∙ 6) ∙ 3. It follows that 

det(

𝟑 1 4 1
0 𝟓 9 2
0 0 𝟔 0
0 0 0 𝟑

) = 𝟑 ∙ 𝟓 ∙ 𝟔 ∙ 𝟑 = 270, 

so the determinant of our 4 × 4 matrix is indeed just the product of its diagonal entries. 

Clearly, the argument above can easily be extended to 5 × 5 matrices, 6 × 6 matrices and so forth. 

And with minor adjustments (see exercise 4), we can use it to show that the determinant of any lower 

triangular matrix is also just the product of its diagonal entries. We summarize our hard-won results about 

triangular matrices (upper and lower) in a box: 

Later in this chapter, this will help us find a method for finding the determinant of any square matrix 𝑀. 

The general method, as we’ll see, will be to row-reduce 𝑀 until it becomes an upper triangular matrix 𝑇, 

whose determinant will, thanks to our theorem, be obvious. We’ll then be able to deduce det(𝑀) from 

two things: det(𝑇), and the sequence of row operations that we used to reduce 𝑀 to 𝑇. 

Theorem. The determinant of any triangular matrix is the product of its diagonal entries. 
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Exercises. 

1. Explain geometrically (i.e. without appealing to the theorem at the end of the section) why  

det(
3 0 0
0 5 0
0 0 2

) = 30. 

2. True or false (and explain): 

a) Every diagonal matrix is an upper triangular matrix. 

b) Every matrix has a determinant.  c) Every square matrix has a determinant. 

d) Every shear matrix is a triangular matrix. e) Every triangular matrix is a shear matrix. 

f) Some matrices are both upper triangular and lower triangular. 

g) det 𝐼 = 1. 

3. a) Consider the upper triangular 2 × 2 matrix  

( 
2 4
0 −3

 ), 

whose effect is shown at right. By our theorem on triangular matrices, its determinant 

should be 2(−3) = −6. Explain geometrically (in terms of the figure) why that negative 

determinant makes sense. (And do you see why this will always happen for every upper 

triangular 2 × 2 matrix with a negative bottom right entry and a positive upper left one?) 

b) Make up an upper triangular 2 × 2 matrix with a negative top left entry, but a positive bottom right one. Draw 

a corresponding picture and explain geometrically why the determinant should be negative. Do you see that 

this will be the case for every matrix of this sort? 

c) Finally, consider the case when both diagonal entries are negative. Our theorem tells us that the determinant 

of such a matrix should be positive. That means that orientation should be preserved, so we should be able to 

get 𝐢 and 𝐣 into their new positions 𝐢′ and 𝐣′ in such a way that neither must cross the line containing the other. 

Explain, in broad terms, how to accomplish this for a specific matrix or two of your choosing.  

4. a) Give a careful definition of a lower triangular matrix. 

b) Make up your own 2 × 2 lower triangular matrix with positive entries on the diagonal and explain geometrically 

why its determinant is the product of its diagonal entries. 

c) Same story, but with a matrix containing a negative (or two) on the diagonal. 

d) Same story, but with a 3 × 3 lower triangular matrix. You can stick to all positive diagonal entries. 

e) Again, but with a 4 × 4 lower triangular matrix. 

5. How can we understand a 4-dimensional hypercube? One way is to build up to it dimension by dimension, through 

repeated perpendicular “extrusions”.  

Start with a 0-dimensional object (a point) and push it one unit east, tracing out a 1-dimensional object: a 

“stack of points”, a line segment. We then push this segment one unit north, tracing out a 2-dimensional object: 

a “stack of segments”, a unit square. When we push this a unit upwards (perpendicular to the plane it lies in), it 

generates a 3-dimensional object: a “stack of squares”, a unit cube. Now we must imagine pushing that unit cube 

one unit in a mysterious spatial direction that is somehow perpendicular to our entire three-dimensional space. 

Doing so yields a “stack of cubes” (stacked along a fourth dimension, with successive cubes touching at all their 

corresponding points). This is a unit four-dimensional hypercube, sometimes called a tesseract. 

a) How many 0-dimensional vertices, 1-dimensional edges, and 2-dimensional faces does a tesseract have? Explain 

your answers geometrically. 

b) Four dimensional figures have not only 0-dimensional vertices, 1-dimensional edges, and 2-dimensional faces, 

but also 3-dimensional “cells”. The tesseract’s cells are cubes. How many such cells does it have?  
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The Determinant: Properties 
For there are many properties in it that, if universally 

known, would habituate its use and make it more in 

request with us than with the Turks themselves. 

 - Awister, quoted by Thomas De Quincey in Confessions of an English Opium Eater (“To the Reader”). 

 

If we transform ℝ𝑛 with an 𝑛 × 𝑛 matrix 𝐴, it’s not too hard 

to see that the 𝑛-dimensional volume of every object in ℝ𝑛 

(not just the “boxes”) will be scaled by a factor of | det 𝐴 |. 

To see why, we’ll need to don our integral calculus glasses.  

Begin by noting that each “standard box” in the standard 

grid (generated by the standard basis vectors) has volume 1. 

By the determinant’s definition, 𝐴 transforms each standard 

box into a box of volume |det 𝐴|. In the figure at right, for 

example, the box with sides 𝐢′ and 𝐣′ has volume |det 𝐴|. 

(Of course, in this two-dimensional case, “volume” is area.)  

So far so simple. Next, imagine chopping each standard 

box into 𝑘 equal “boxlets”. (In the figure, I’ve made 𝑘 = 64.) 

Each boxlet has volume 𝟏/𝒌, and since the 𝑘 transformed boxlets (whose total area is |det 𝐴|) are equal, 

each transformed boxlet must have volume |𝐝𝐞𝐭𝑨|/𝒌. It follows that |det 𝐴| serves as a volume-scaling 

factor not just for full standard boxes, but for our boxlets, too. This will hold regardless of whether we use 

64 boxlets, 1000 boxlets, 10100 boxlets, or – letting the spirit of calculus guides us – infinitely many 

infinitesimally small boxlets. In all cases, |det 𝐴| acts as a volume-scaling factor when 𝐴 acts on the boxlets. 

We’ll can now think of any old figure in ℝ𝑛 (a hand, a sheep, a 6-dimensional hypersphere, or whatnot) 

in a pixelated manner – chopped into a collection of infinitesimal boxlets. Since 𝐴 scales the volume of 

each infinitesimal boxlet by a factor of |det 𝐴|, it clearly scales the entire figure’s volume by |det 𝐴|, too. 

The idea of the determinant as a volume-scaling factor is tremendously important in vector calculus. 

In ordinary freshman calculus, we work with functions from ℝ to ℝ. Locally (on an infinitesimal scale), 

such functions’ graphs are straight, so locally, the functions themselves are linear. We can thus describe 

any such function’s local behavior with one number: the slope of the line that it resembles at that point. 

And as everyone knows, we call that number the function’s derivative at that point. In vector calculus, 

however, we consider functions from ℝ𝑛 to ℝ𝑚. Locally, such functions resemble linear transformations. 

Thus, describing the local behavior of a nonlinear function from ℝ𝑛 to ℝ𝑚 requires more than a number; 

it requires a matrix. Accordingly, the derivative of such a function is, at any point in its domain, a matrix. 

When 𝑚 = 𝑛, the matrix is square, and thus it has a determinant. This determinant plays a role when we 

change variables in integration, doing the higher-dimensional analogue of the familiar “u-substitution”. 

You can look forward to studying how this works in a future course. 

Property 1. The determinant is a volume-scaling factor: When an an 𝑛 × 𝑛 matrix 𝐴 

transforms objects in ℝ𝑛, it scales their 𝑛-dimensional volumes by |det𝐴|. 
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This volume-scaling property helps us understand a vital algebraic property of determinants: 

The determinant of a product is… the product of the determinants. 

For example, suppose 𝐴 and 𝐵 are square matrices that scale volumes by factors of 5 and 3 respectively. 

I claim that 𝐴𝐵 must scale volumes by a factor of 15. Why? Well, multiplying matrices corresponds to 

composing linear maps, so 𝐴𝐵 first scales volumes by 3 (through 𝐵’s action), then scales the results by 5 

(through 𝐴’s action). Hence, the net effect is that 𝐴𝐵 scales volumes by a factor of 3 ∙ 5 = 15, as claimed. 

This same analysis clearly holds for any two matrices with nonnegative determinants. A little thought 

shows that it also holds when a negative determinant (or two) is involved. For example, if 𝑀 scales 

volumes by 2 and reverses orientation (so that det(𝑀) = −2) while 𝑁 scales volumes by 5 and preserves 

orientation (so that det(𝑁) = 5), then 𝑀𝑁 obviously scales volumes by 10 and reverses orientation. That 

is, det(𝑀𝑁) = −10, which is, of course, the product of det(𝑀) and det(𝑁). I’ll leave it to you to convince 

yourself that this property also holds when both matrices have negative determinants. 

Our next two properties concern some relationships between determinants and inverse matrices. 

Recall from Chapter 3, Exercise 23 that the inverse of 𝐴, which we denote 𝐴−1, is the matrix that “undoes” 

𝐴’s action. (That is, if 𝑨𝐯 = 𝐰, then 𝐴−1𝐰 = 𝐯.) It follows that the product of 𝐴 and 𝐴−1 (in either order) 

is the identity matrix 𝐼. In that same exercise, we saw that not every matrix is invertible. For a linear map 

(or the matrix representing it) to be invertible, it must be “one-to-one”; that is, it must always take distinct 

points from the domain to distinct points in the range. (After all, if 𝐴 were to map both 𝐯𝟏 and 𝐯𝟐 to 𝐰, 

then what would 𝐴−1𝐰 be?)  

See if you can justify this next property on your own before reading that explanation that follows it. 

 

 

 

 

 

If 𝐴 scales volumes by a factor of 7, then 𝐴−1, undoing that action, must scale volumes by a factor of 1/7. 

Similarly, if 𝐵 scales volumes by 2/3 and reverses orientation, then 𝐵−1 will need to scale volumes by 3/2 

and reverse orientation. If you understand that much, you should see why Property 3 always holds. 

But wait a minute. What if det𝐴 = 0? In that case, our formula involves division by 0. But fear not: 

This can’t happen. If det 𝐴 = 0 (and 𝐴 is 𝑛 × 𝑛), 𝐴 scales every 𝑛-dimensional volume by a factor of zero. 

That doesn’t mean that 𝐴 crushes all of ℝ𝑛 into 𝟎, but it does mean that some dimensional collapse must 

occur. (For instance, a 3 × 3 matrix that crushes ℝ3 down into a plane has determinant 0; yes, something 

comes out the other end of the mapping, but no 3-dimensional volume survives.) Whenever dimensional 

collapse occurs, many distinct points in the domain end up being mapped to the same point in the range.* 

Thus the map isn’t one-to-one, so its matrix can’t be invertible, so Property 3 wouldn’t be applicable. 

We’ve discovered something important in passing: If a matrix has determinant 0, it isn’t invertible. 

 
* “Dimensional collapse” means that the map’s rank less than its domain’s dimension. So by the rank-nullity theorem, the kernel’s 

dimension is at least 1. Hence, the map’s kernel has infinitely many points, all of which get mapped to 𝟎. 

Property 2. If 𝐴 and 𝐵 are any two 𝑛 × 𝑛 matrices, then 

det(𝐴𝐵) = det(𝐴) det(𝐵). 

Property 3. If 𝐴 is any invertible matrix, then 

det(𝐴−1) =
1

det 𝐴
. 
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On the other hand, it’s easy to see that any 𝑛 × 𝑛 matrix with a nonzero determinant is invertible. 

If the determinant is nonzero, then although 𝑛-dimensional volume may be scaled, it at least survives as 

𝑛-dimensinal volume, which implies that there’s no dimensional collapse. All 𝑛 dimensions remain in the 

map’s output, which will be pervaded by a “clean grid” generated by 𝑛 linearly independent vectors. It 

should be intuitively clear in your mind’s eye that any such transformation maps distinct points to distinct 

points. In other words, any such transformation is one-to-one, and therefore the matrix that represents 

it is invertible. 

Combining the results of the previous two paragraphs yields our next trophy: A matrix is invertible if 

and only if its determinant is nonzero. 

So far, we have built up the determinant’s most important properties just by thinking geometrically. 

But how do we actually compute a determinant? We’ll begin with one special case: The determinant of 

a 2 × 2 matrix. 

 

 

 

 

Proof. The figure at right shows the parallelogram determined by the 

2 × 2 matrix’s columns. The determinant is the parallelogram’s area, 

which is the large rectangle’s area minus the areas of the four right 

triangles and the two small rectangles in the corners. Or in symbols, 

det (
𝑎 𝑐
𝑏 𝑑

) = (𝑎 + 𝑐)(𝑑 + 𝑏) − 2 (
1

2
𝑎𝑏) − 2 (

1

2
𝑐𝑑) − 2(𝑏𝑐). 

The right-hand side reduces, as you should verify, to 𝑎𝑑 − 𝑐𝑏.        ∎ 

For the preceding proof to be fully rigorous, we’d need to consider some other possible configurations. 

(For example, what if the vectors make an obtuse angle? What if the vectors are arranged so that the 

determinant is negative?) You’ll dispose of some such cases in Exercise 9. 

  

Property 4.    Matrix 𝐴 is invertible    ⇔    det 𝐴 ≠ 0  

Property 5. (2 × 2 Determinant formula) 

det (
𝑎 𝑐
𝑏 𝑑

) = 𝑎𝑑 − 𝑐𝑏 
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Exercises. 

6. We justified Property 3 geometrically. Now explain it with algebra. [Hint: By definition, 𝐴−1𝐴 = 𝐼.] 

7. Consider the following matrices: 

𝐴 = (
2 3
1 2

) ,          𝐵 = (
8 3
7 2

) , 𝐶 = (
3 6
2 4

) ,          𝐷 = (
−4 3
−5 4

) ,          𝐸 = (
9 7
3 9

). 

a) Compute their determinants.       b) Which of the preceding matrices are invertible? 

c) Remind yourself why a matrix whose determinant is zero cannot be inverted. 

d) Which of the preceding matrices represent linear transformations that preserve area? 

e) Which of them reverse the orientation of ℝ2? 

f) Find the determinants of the inverses of the invertible matrices. Be sure that you understand why your answers 

make geometric sense. [Note: You need not find the inverse matrices themselves, just their determinants.] 

g) Find 𝐵2 and use it to compute det(𝐵2). Be sure that you understand why the relationship between det 𝐵 and 

det(𝐵2) makes geometric sense. 

h) Without finding 𝐴𝐵, find det(𝐴𝐵). Then find 𝐴𝐵 and compute its determinant directly to verify your answer. 

8. (Extending the Invertible Matrix Theorem) In Chapter 4, Exercise 40, you found that for any 𝑛 × 𝑛 matrix 𝐴, 

statements A - I below are logically equivalent, meaning that they all stand or all fall together. Convince yourself 

that statement J can join this growing list, too. (The list will grow again in Exercise 19.) 

a) 𝐴 is invertible.          b) rref(𝐴) = 𝐼.             c) 𝐴𝐱 = 𝐛 has a unique solution for every vector 𝐛. 

d) 𝐴’s columns are linearly independent.       e) 𝐴’s columns span ℝ𝑛.       f) 𝐴’s columns constitute a basis for ℝ𝑛.       

g) ker(𝐴) = 𝟎.             h) im(𝐴) = ℝ𝑛.            i) rank(𝐴) = 𝑛.                     j) det 𝐴 ≠ 0. 

9. We justified our 2 × 2 determinant formula 

det (
𝑎 𝑐
𝑏 𝑑

) = 𝑎𝑑 − 𝑏𝑐 

with a nice orientation-preserving matrix whose columns determined a parallelogram lying in the first quadrant. 

Given a less nice setup – such as one of those indicated in the figures below (the first of which has a parallelogram 

stretching into the second quadrant, the second of which corresponds to an orientation-reversing map) – does 

the 2 × 2 determinant formula still hold? Yes it does. Demonstrate this. Once you’ve grasped those two cases, 

you’ll likely be convinced that the formula does indeed hold for all possible 2 × 2 matrices.  

[Hint for Part A: Entries in a matrix can be negative, but lengths must, of course, be positive.] 

a)   b)  

 

 

 

10. In Exercise 29 of Chapter 4, you established a quick formula for the inverse of a 2 × 2 matrix 

𝐴 = (
𝑎 𝑐
𝑏 𝑑

). 

You can now rewrite that quick formula for 𝐴−1 in a manner that is slightly easier to remember. Do so. 

11. Property 2 extends to products of three or more matrices. For example, it’s also true that 

det(𝐴𝐵𝐶) = det(𝐴) det(𝐵) det(𝐶). 

However many matrices there are, the determinant of a product is the product of the determinants. Explain why. 

Then use this idea to compute det(𝐷1000), where 𝐷 is the matrix of that name in Exercise 7.   
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12. Determinants often give us surprising leverage in proofs - even when we are proving things unrelated to volume. 

In this exercise, for instance, determinants will help us prove that a square matrix 𝐴’s “left inverse” (i.e. a matrix 

𝐵 such that 𝐵𝐴 = 𝐼) necessarily works as a “right inverse” as well (that is, 𝐴𝐵 = 𝐼). 

The preceding fact about “one-sided inverses” might seem obvious, but recall that when I introduced inverse 

matrices (Chapter 3, Exercise 23), I did so as follows: 

The matrix that undoes the action of a square matrix 𝐴 is called the inverse matrix of 𝐴, and is denoted 𝐴−1. 

Thus, by definition, 𝐴−1𝐴 = 𝐼 = 𝐴𝐴−1. 

In a footnote for that sentence, I added the following:  

If we wish to show that a matrix 𝐵 is in fact 𝐴−1, we must – by this definition – verify two separate things: 

𝐵𝐴 = 𝐼 and 𝐴𝐵 = 𝐼. But we’ll prove later (Ch. 5, Exercise 12) that each of these things implies the other, so 

to verify both, we just need to verify one. 

Well, here we are. Let’s get to work.  

a) Convince yourself that each step in the following argument holds, justifying each step where appropriate. 

Claim. If 𝐴 is an 𝑛 × 𝑛 matrix and 𝐵𝐴 = 𝐼, then 𝐴𝐵 = 𝐼, too. 

Proof. If 𝐵𝐴 = 𝐼, then det(𝐵𝐴) = det 𝐼. Thus, det(𝐵) det(𝐴) = 1. From this it follows that det 𝐵 ≠ 0. 

Hence, 𝐵 doesn’t collapse any dimensions. In particular, ker(𝐵) = 𝟎, a fact that we’ll use shortly.  

Since 𝐵𝐴 = 𝐼, it follows that 𝐵𝐴𝐵 = 𝐵, or equivalently, 𝐵𝐴𝐵 − 𝐵 = 𝑍, where 𝑍 is the zero matrix, 

representing the “zero map”. Rewriting the last equation as 𝐵(𝐴𝐵 − 𝐼) = 𝑍, we deduce that 𝐵(𝐴𝐵 − 𝐼) 

sends all vectors in ℝ𝑛 to 𝟎. But since 𝐵 sends only 𝟎 to 𝟎, it must be the case that all outputs of (𝐴𝐵 − 𝐼) 

are already 𝟎. In other words, matrix (𝐴𝐵 − 𝐼) must represent the zero map. Accordingly, 𝐴𝐵 − 𝐼 = 𝑍. 

Adding 𝐼 to both sides of this equation, we find that 𝐴𝐵 = 𝐼, as claimed. ∎  

b) Prove the converse claim: If 𝐴 is an 𝑛 × 𝑛 matrix and 𝐴𝐵 = 𝐼, then 𝐵𝐴 = 𝐼, too. (And hence, 𝐵 = 𝐴−1.) 

The moral of this exercise is that if we ever show that some square matrix 𝐴 has a “one-sided inverse”, then it must 

in fact be the full inverse 𝐴−1. We are therefore mercifully free from the burden of having to distinguish between 

“left inverses” and “right inverses” of square matrices. 
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Elementary Matrices (and their Determinants) 
Elementary, my dear Watson! 

 - not Sherlock Holmes*  

 

An elementary matrix is one that can be obtained from the identity matrix by applying one row operation. 

Accordingly, the following are all examples of elementary matrices: 

(
1 0 0
0 0 1
0 1 0

),          (
1 0 0
0 3 0
0 0 1

),          (
1 0 0
0 1 0
0 2 1

). 

The first matrix was obtained by swapping 𝐼’s first two rows. The second was obtained by scaling 𝐼’s 

middle row by 3. The third was obtained by adding two copies of 𝐼’s middle row to its bottom row. 

Row operations are violent but effective surgery in which we slice open a matrix to alter its innards. 

Elementary matrices can deliver all the results of “row operation surgery” but in a less invasive manner. 

The idea: Instead of doing a row operation on a given matrix, we left-multiply it by the elementary matrix 

obtained from 𝐼 by that row operation. For example, instead of scaling a matrix’s 2nd row by 3 like this, 

(
2 5 7
1/3 2/3 3
4 1 4

)   × 3   (
2 5 7
1 2 9
4 1 4

), 

we can left-multiply the given matrix by the elementary matrix obtained by scaling 𝐼’s 2nd row by 3: 

(
1 0 0
0 3 0
0 0 1

)(
2 5 7
1/3 2/3 3
4 1 4

) = (
2 5 7
1 2 9
4 1 4

), 

Obviously, doing the row operation directly is simpler in a narrow pragmatic sense, but the elementary 

matrix approach has a crucial advantage for theoretical work: It replaces a messy ad hoc procedure with 

pristine matrix algebra. It replaces bookkeeping scratchwork with an equation – an object to which we 

can then apply algebraic rules. And this algebra, in turn, will lead us to a simple algorithm for computing 

the determinant of any square matrix, not just those special few whose determinants we’ve found so far 

(shear, triangular, and 2 × 2 matrices). But before we can do that, we’ll need to learn one last thing about 

elementary matrices: their determinants. This turns out to be easy, since, as we’ll show in the next three 

paragraphs, every elementary matrix represents one of three simple geometric operations.   

 First, any elementary matrix obtained by swapping rows of 𝐼 represents a reflection. 

Why? Swapping 𝐼’s 𝑗th and 𝑘th rows is equivalent to swapping its 𝑗th and 𝑘th columns – 

an operation with clear geometric meaning: It swaps the 𝑗th and 𝑘th standard basis vectors’ 

positions, reflecting them (in their common plane) across the line that bisects the right 

angle between them. Hence, all elementary matrices of this first type are reflections, as 

claimed.† Hence, the determinants of all “row swap elementary matrices” are −𝟏, since 

reflections preserve volumes but reverse orientation. 

 
* This famous expression never occurs in any of Arthur Conan Doyle’s many Sherlock Holmes stories and novels. One steeped in 

Sherlockiana might call it “the curious incident of the Holmes exclamation in the night”. 

† Strictly speaking, the linear map corresponding to an 𝑛 × 𝑛 matrix of this sort is a reflection in an (𝑛 − 1)-dimensional “mirror”. 
If we swap columns 𝑗 and 𝑘, the “mirror” is the subspace spanned by the vector 𝐞𝒋 + 𝐞𝒌 and the (𝑛 − 2) fixed basis vectors.  
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 Second, any elementary matrix that we obtain by scaling one of 𝐼’s 

rows is a stretch along an axis (with a reflection if the scalar is negative). 

Why? Scaling 𝐼’s 𝑗th row by 𝑐 is equivalent to scaling its 𝑗th column by 𝑐 – 

an operation with a clear geometric interpretation: It alters the standard 

grid by stretching the 𝑗th basis vector by a factor of |𝑐| (and reversing its 

direction if 𝑐 < 0), while the others stay put. The transformed grid thus 

consists of rectangular boxes, each of volume (|𝑐| ⋅ 1 ⋅ 1⋯ ⋅ 1) = |𝑐|. 

Orientation will be preserved or reversed according to 𝑐’s algebraic sign. 

Thus, all elementary matrices of this second type represent stretches 

(sometimes with an accompanying reflection). Hence, the determinant of 

any “row scale elementary matrix” is the row scale factor 𝒄 itself. 

 Third and last, any elementary matrix that we obtain by adding a 

multiple of one of 𝐼’s rows to another of its rows represents a shear. 

To see why, suppose that we add 𝑐 copies of 𝐼’s 𝑗th row to its 𝑘th row. 

The resulting elementary matrix will look like an identity matrix in which 

someone has tampered with one column, changing one of its zeros to 

some other number. As we saw in Example 4 in this chapter’s first section, 

a matrix of that form is a shear matrix. And as we discussed in that same 

example, the determinant of any shear matrix is 1. Thus, any elementary 

matrix of this third kind has a determinant of 𝟏.  

 

After a few exercises, we’ll finally be ready to turn to our last major problem of the chapter: deriving 

a method for computing the determinant of any square matrix.  

 

Exercises.  

13. For each of the following row operations, find the elementary matrix that carries it out. 

Verify your matrices by left-multiplying them against the telephone matrix at right. 

a) Swap rows 2 and 3.         

b) Scale row 2 by 4.          

c) Subtract 4 copies of row 1 from row 2. 

14. What are the determinants of the three elementary matrices you found in the previous problem? 

15. Suppose 𝐸1, 𝐸2, 𝐸3 are elementary matrices; 𝐸1 swaps rows, 𝐸2 scales a row by −3, and 𝐸3 adds a multiple of 

one row to another. Now suppose that 𝐸3𝐸2𝐸1𝐴 is a triangular matrix 𝑇, whose determinant is 5. What, if 

anything, can we conclude about det(𝐴)? [Hint: Recall Exercise 11.] 

To sum up: Any elementary matrix that we can use to…  

• Swap rows represents a reflection. Hence, its determinant is −𝟏. 

• Scale a row (by 𝑐) represents a stretch (by a factor of 𝑐; if 𝑐 < 0, there’s a reflection, too). 

Hence, its determinant is 𝒄. 

• Add a multiple of one row to another is a shear. Hence, its determinant is 𝟏. 
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Computing Determinants (by Row Reduction) 

 

At long last, we can establish a simple algorithm for computing any square matrix’s determinant.  

 

 

 

 

 

 

 

 

 

 

If you solved Exercise 15 on the previous page, you’ve already understood, in essence, why this algorithm 

works. But let’s spell out the details. 

Proof. To reduce 𝐴 to a triangular matrix 𝑇, we perform row operations. Let 𝐸1, 𝐸2, … , 𝐸𝑚 be their 

corresponding elementary matrices so that 𝐸𝑚⋯𝐸2𝐸1𝐴 = 𝑇. Taking determinants of both sides 

(and recalling Exercise 11) yields det(𝐸𝑚)⋯det(𝐸2) det(𝐸1) det(𝐴) = det(𝑇). Or equivalently, 

det 𝐴 = 
det 𝑇

det(𝐸𝑚)⋯det(𝐸2) det(𝐸1)
. 

By our work in the previous section, we can evaluate that denominator. There are 𝑠 “row swap 

elementary matrices” down there, so we know that the product of their determinants is (−1)𝑠. 

Next, the “row scale elementary matrices”: We know that the product of their determinants is 𝑝. 

This leaves the elementary matrices that add multiples of one row to another. These are shear 

matrices, so their determinants are all 1. It follows that det 𝐴 = det 𝑇 /(−1)𝑠𝑝, as claimed.      ∎ 

An example will make the idea clearer. 

Example 1. Find the determinant of (
2 −3 7
4 9 −3
2 4 −2

). 

Solution. We’ll reduce the matrix to triangular form, keeping track of row swaps and the product 

of any factors we use to scale rows. Here’s one way to accomplish this row reduction: 

(
2 −3 7
4 9 −3
2 4 −2

) 𝑅1 ↔ 𝑅3  (
2 4 −2
4 9 −3
2 −3 7

) 
× 1 2⁄

 (
1 2 −1
4 9 −3
2 −3 7

) −4𝑅1
−2𝑅1

 (
1 2 −1
0 1 1
0 −7 9

)
+7𝑅2

 (
1    2 −1
0  1 7
0  0 16

). 

This row reduction entailed 1 row swap. The product of all scaling factors (only one) was 1/2. 

Since the process yielded a triangular matrix whose determinant is 16, we conclude that 

det 𝐴 =
16

(−1)1(1 2⁄ )
= −𝟑𝟐.                                                          

Determinant Algorithm.  

Use Gaussian elimination to reduce the given matrix 𝐴 to a triangular matrix 𝑇, 

and keep track of…  

➢ the number 𝑠 of row swaps you use 

➢ the product 𝑝 of all the factors by which you multiply rows. 

We then have 

  

 

(As discussed earlier in this chapter, det 𝑇 is the product of 𝑇’s diagonal entries.) 

 

 

det 𝐴 =
det 𝑇

(−1)𝑠𝑝
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And that’s that. With that technique in hand, you can now compute the determinant of any square matrix 

whatsoever. All you need is Gaussian elimination and some careful bookkeeping. Incidentally, we can use 

this algorithm to recover the quick formula for 2 × 2 determinants that we derived geometrically. 

Example 2. Use row-reduction to rederive the “quick formula” for a 2 × 2 determinant. 

Solution. Start with an expression for a general 2 × 2 matrix, and row reduce it to triangular form: 

(
𝑎 𝑐
𝑏 𝑑

) 
× (1 𝑎⁄ )

 (
1 𝑐/𝑎
𝑏 𝑑

) 
−𝑏𝑅1

 (
1 𝑐/𝑎
0 (𝑎𝑑 − 𝑏𝑐)/𝑎

). 

This reduction required no row swaps, and the product of all scaling factors was 1/𝑎. It yielded a 

triangular matrix whose determinant is (𝑎𝑑 − 𝑏𝑐)/𝑎, so we conclude that 

det (
𝑎 𝑐
𝑏 𝑑

) =
(𝑎𝑑 − 𝑏𝑐) 𝑎⁄

1 𝑎⁄
= 𝑎𝑑 − 𝑏𝑐.                                                  

We’ll end with a surprising theorem: Any matrix and its transpose have the same determinant. 

Theorem. det(𝐴𝑇) = det(𝐴) for every square matrix 𝐴. 

Proof. Reduce 𝐴 to triangular form 𝑇. Let 𝐸1, 𝐸2, … , 𝐸𝑚 be the elementary matrices corresponding 

to the row operations, so that 𝐸𝑚⋯𝐸2𝐸1𝐴 = 𝑇. Taking determinants of both sides (and recalling 

Exercise 11) yields det(𝐸𝑚)⋯det(𝐸2) det(𝐸1) det(𝐴) = det(𝑇). Equivalently, 

det 𝐴 = 
det 𝑇

det(𝐸𝑚)⋯det(𝐸2) det(𝐸1)
 . 

We’ll now demonstrate that det 𝐴𝑇 has this same form. Go back to 𝐸𝑚⋯𝐸2𝐸1𝐴 = 𝑇 and take the 

transpose of both sides. By a property you proved in Chapter 3 (Exercise 26e), this yields 

𝐴𝑇𝐸1
𝑇𝐸2

𝑇⋯𝐸𝑚
𝑇 = 𝑇𝑇 . 

Now take determinants of both sides, using the property that the determinant of a product is the 

product of the determinants, then solve for det(𝐴𝑇). Doing so, we find that 

det(𝐴𝑇) =  
det(𝑇𝑇)

det(𝐸1
𝑇) det(𝐸2

𝑇)⋯det(𝐸𝑚
𝑇 )
 . 

In fact, we’ll soon be able to erase all those transpose superscripts. To see why, first observe that 

since 𝑇 is an upper triangular matrix, 𝑇𝑇 is lower triangular. The determinants of both 𝑇 and 𝑇𝑇 

are thus the products of their diagonal entries. Moreover, as transpose “mates”, 𝑇 and 𝑇𝑇 have 

the same diagonal entries. Hence, det(𝑇𝑇) = det 𝑇. Next, consider those elementary matrices. 

Transposition leaves the first two types (row scale and row swap) unchanged, so it doesn’t change 

their determinants. As for the third type of elementary matrix, these are triangular with 1s on 

their main diagonal, and transposing any such matrix turns it into a matrix of the same sort. Since 

all such matrices have determinants of 1, transposition clearly preserves their determinants, too. 

We’ve now shown that det(𝐸𝑖
𝑇) = det(𝐸𝑖) for all 𝑖. The two highlighted equations indicate that 

we can indeed erase all the transpose superscripts from the right-hand side of our expression for 

det(𝐴𝑇). Doing so and then rearranging the denominator’s factors, we obtain the right-hand side 

of our earlier expression for det 𝐴. Thus, det(𝐴𝑇) = det 𝐴, as claimed.                                             ∎ 
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Exercises. 

16. Use row-reduction to compute the determinants of the following matrices. 

a) (
3    2 1
0    3 −6
0    2 −2

)        b) (
5 3 7
1 0 0
0 1 2

)        c) ( 
2  4    6
3 −4 8
0  2 5

)        d) (
1 7 1

−1 0 2
3 −1 −3

)        e) (
3 2 6
4 8 4
1 0 2

) 

f) (

0 3 2 4
1 1 2 1
1 1 5 2
1 1 3 3

)       g) (

1 −1   2 −2
−1 2   1 6
2 1   14 10

−2 6   10 33

)        h) (

1 1 1 1
1 1 2 5
1 1 3 6
1 1 4 7

) 

17. Explain geometrically why the matrix in Exercise 16h has a determinant of 0. 

18. (Quick Formula for 𝟑 × 𝟑 determinants) In Example 2, we re-derived the quick formula for a 2 × 2 determinant. 

As it happens, we can use the same idea that we used there to derive a quick formula for 3 × 3 determinants. 

The algebra involved is basic but tedious (try it), so I’ll dispense with the details and just tell you the punchline: 

det (

𝑎 𝑑 𝑔
𝑏 𝑒 ℎ
𝑐 𝑓 𝑖

) = 𝑎𝑒𝑖 + 𝑑ℎ𝑐 + 𝑔𝑏𝑓 − 𝑎ℎ𝑓 − 𝑑𝑏𝑖 − 𝑔𝑒𝑐. 

To find a mnemonic device for this result, imagine lines through the matrix, acting like objects in old video games: 

When a line exits the matrix through one side, it re-enters on the opposite side, proceeding in the same direction. 

Thus, a line beginning at 𝑑 and travelling southeast passes through ℎ and then… 𝑐. Bearing this in mind, look 

again at the determinant’s six terms: The first three (𝑎𝑒𝑖, 𝑑ℎ𝑐, 𝑔𝑏𝑓) are “spelled out” by three lines starting at 

each top-row entry, sloping southeast. The next three terms (which are subtracted) are spelled out by three lines 

starting at each top-row entry, but now sloping southwest. Having linked those six terms to those six lines, we 

can quickly compute a 3 × 3 matrix’s determinant by mentally following the lines, writing down the six products 

(with plusses and minuses in the right places), and then adding them up. For example, 

det (
1    3 −1
2    4 0
5    1 6

) = 24 + 0 + (−2) − 0 − 36 − (−20) = 𝟔. 

Note well: This quick formula works only for the special case of 3 × 3 determinants! Don’t try to use an analogue 

of it for a matrix of any other size. It won’t work. 

a) Verify that the determinant we just computed really is 6 by recomputing it via row reduction. 

b) Use this quick formula to re-compute the determinants of the 3 × 3 matrices in Exercise 16. 

19. (Extending the Invertible Matrix Theorem) In Exercise 8, you saw that statements A - J in the list below were 

equivalent statements about an 𝑛 × 𝑛 matrix 𝐴. Explain why we can add K, L, and M to the list:  

a) 𝐴 is invertible.          b) rref(𝐴) = 𝐼.            c) 𝐴𝐱 = 𝐛 has a unique solution for every vector 𝐛. 

d) 𝐴’s columns are linearly independent.       e) 𝐴’s columns span ℝ𝑛.       f) 𝐴’s columns constitute a basis for ℝ𝑛.       

g) ker(𝐴) = 𝟎.             h) im(𝐴) = ℝ𝑛.           i) rank(𝐴) = 𝑛.                     j) det 𝐴 ≠ 0. 

k) 𝐴’s rows are linearly independent.             l) 𝐴’s rows span ℝ𝑛.           m) 𝐴’s rows constitute a basis for ℝ𝑛. 

To reiterate, the moral of the invertible matrix theorem is that square matrices come in two types: invertible 

matrices (which satisfy all twelve of those conditions) and noninvertible matrices (which satisfy none of them). 

20. Do the rows of (
1 2 3
0 1 4
1 1 2

) span ℝ3?  [Hint: Use the previous exercise.] 

21. Suppose a square matrix has a column consisting entirely of zeros. What can we say about its determinant? Why? 

(And what, if anything, could we say about a matrix containing a row of all zeros?) 
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Computing Determinants (by Cofactor Expansion) 
 

In this last section, we’ll discuss cofactor expansion, an alternate algorithm for computing determinants. 

Though significantly less efficient than the row-reduction algorithm, cofactor expansion is, bizarrely, given 

pride of place in most linear algebra textbooks. Despite its relative inefficiency (which I’ll discuss at the 

end of this section), cofactor expansion is at least algebraically interesting, and it’s useful in certain special 

conditions – particularly when a matrix has a row or column consisting mainly of zeros. 

We’ll sneak up on it by reexamining the quick formula for 3 × 3 determinants we met in Exercise 18: 

det (

𝑎 𝑑 𝑔
𝑏 𝑒 ℎ
𝑐 𝑓 𝑖

) = 𝑎𝑒𝑖 + 𝑑ℎ𝑐 + 𝑔𝑏𝑓 − 𝑎ℎ𝑓 − 𝑑𝑏𝑖 − 𝑔𝑒𝑐. 

First, let’s rearrange the expression on the right as follows: 𝒂(𝑒𝑖 − ℎ𝑓) − 𝒅(𝑏𝑖 − ℎ𝑐) + 𝒈(𝑏𝑓 − 𝑒𝑐). 

Consider those three terms. Each has two factors. What can we say about the two factors of each term? 

After some hard staring, we can discern a pattern: Each term’s first factor (in boldface) is an element from 

the matrix’s top row. Much more subtly, each term’s second factor (in parentheses) is the determinant of 

the 2 × 2 matrix that we “expose” by mentally deleting the row and the column containing the first factor. 

(Verify this.) Interesting! But why is the middle term alone subtracted? Is this part of a pattern as well? 

We can discover the answer by experimenting a bit more. 

Our first experiment is inspired by a nagging aesthetic blemish: Why should a matrix’s first row have 

special status with respect to the determinant? Could we rearrange our original six-term expression for 

the determinant to emphasize the second row? Well, let’s play around (a cherished mathematical activity) 

and see what we discover. Given enough play time, you’d find that we can rearrange the original six-term 

determinant expression from our “quick formula” as follows: −𝒃(𝑑𝑖 − 𝑔𝑓) + 𝒆(𝑎𝑖 − 𝑔𝑐) − 𝒉(𝑎𝑓 − 𝑑𝑐). 

The same basic pattern holds: Each term’s first factor is drawn from a particular row, and its second factor 

is the determinant of the 2 × 2 matrix we get by crossing out the row and column of the first factor. Nice! 

But curiously, the sign pattern has been reversed. Now it’s the two outer terms that are subtracted. Why? 

Maybe we’ll gain further insight if we play this same game with the third row? Only one way to find out. 

Rearranging the original six-term expression again, we get 𝒄(𝑑ℎ − 𝑔𝑒) − 𝒇(𝑎ℎ − 𝑔𝑏) + 𝒊(𝑎𝑒 − 𝑑𝑏). 

Reassuringly, our basic pattern continues to hold: Each term’s second factor is still the determinant of the 

matrix that we get by nixing the first factor’s row and column. But the signs have reverted to the original 

+ − + pattern that we saw when we “expanded” our determinant along the first row. Why?  

After pondering this for a while, you may begin to feel another source of aesthetic unease. We’ve now 

seen, with satisfying symmetry, that one row is as good as another as far as our basic pattern is concerned, 

and yet… why should rows matter more than columns with respect to determinants? After all, we proved 

in the previous section that transposing a matrix – turning its rows into columns and vice versa – doesn’t 

change its determinant. Well, can we do unto the columns what we’ve done to the rows? Let’s see. 

We can in fact rewrite our original determinant in the form 𝒂(𝑒𝑖 − ℎ𝑓) − 𝒃(𝑑𝑖 − 𝑔𝑓) + 𝒄(𝑑ℎ − 𝑔𝑒). 

Now each term’s first factor is from the first column, and the second is the expected 2 × 2 determinant. 

In fact, we can play this same game with the second column, −𝒅(𝑏𝑖 − ℎ𝑐) + 𝒆(𝑎𝑖 − 𝑔𝑐) − 𝒇(𝑎ℎ − 𝑔𝑏), 

or the third, 𝒈(𝑏𝑓 − 𝑒𝑐) − 𝒉(𝑎𝑓 − 𝑑𝑐) + 𝒊(𝑎𝑒 − 𝑑𝑏). Each time, everything works out as we’d expect. 

Not only have we vindicated our aesthetic sense of symmetry, but we’ve now also gathered enough data 

(our six different “expansions” of the determinant along each row and column) to crack the code of the 

alternating signs… after some more hard staring and thinking. 
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We’ve seen that the following are all equivalent to our six-term expression for a 3 × 3 determinant:  

  𝒂(𝑒𝑖 − ℎ𝑓) − 𝒅(𝑏𝑖 − ℎ𝑐) + 𝒈(𝑏𝑓 − 𝑒𝑐) 

−𝒃(𝑑𝑖 − 𝑔𝑓) + 𝒆(𝑎𝑖 − 𝑔𝑐) − 𝒉(𝑎𝑓 − 𝑑𝑐) 

    𝒄(𝑑ℎ − 𝑔𝑒) − 𝒇(𝑎ℎ − 𝑔𝑏) + 𝒊(𝑎𝑒 − 𝑑𝑏) 

   𝒂(𝑒𝑖 − ℎ𝑓) − 𝒃(𝑑𝑖 − 𝑔𝑓) + 𝒄(𝑑ℎ − 𝑔𝑒) 

−𝒅(𝑏𝑖 − ℎ𝑐) + 𝒆(𝑎𝑖 − 𝑔𝑐) − 𝒇(𝑎ℎ − 𝑔𝑏) 

    𝒈(𝑏𝑓 − 𝑒𝑐) − 𝒉(𝑎𝑓 − 𝑑𝑐) + 𝒊(𝑎𝑒 − 𝑑𝑏) 

In the 18 terms above, we see that the sign is intimately connected with the first factor. 

Observe that both terms whose first factor is 𝒂 are added. Both terms whose first factor 

is 𝒃 are subtracted. Both terms whose first factor is 𝒄 are added. And so on and so forth, 

all the way down to 𝒊. In fact, what we see is that a term’s sign is determined by its first 

factor’s position in the matrix. At right, I’ve rewritten the original matrix, supplemented 

by another containing + and – signs in the corresponding slots. The result, a simple 

checkerboard pattern, captures the sign that goes with each position in the matrix. Or, 

more formally, we can say that if the term’s first factor is in row 𝑗, column 𝑘, then the term is added if 

(𝑗 + 𝑘) is even, and subtracted if (𝑖 + 𝑗) is odd.  

We’ve now unearthed the full pattern, which generalizes to determinants of every size. With patience, 

we could follow the strategy that led us to our “quick formulas” for 2 × 2 and 3 × 3 determinants 

(Example 2 in the previous section & Exercise 18) and find formulas for 4 × 4, 5 × 5, or higher order 

determinants. Doing so, we’d see that any 𝑛 × 𝑛 determinant can be expressed as a sum of 𝑛! terms. 

With some algebraic shenanigans, we can rearrange those 𝑛! terms into a sum of just 𝑛 terms, each of 

which has two factors (and a choice of sign). We can arrange matters so that the first factors come from 

any chosen row or column of the given matrix. The corresponding second factors will then be the 

determinants of the (𝑛 − 1) × (𝑛 − 1) matrices that we get by deleting the first factor’s row and column. 

Finally, the sign is given by the first factor’s position in the 𝑛 × 𝑛 “checkerboard matrix” with a + in its top 

left corner. 

This leads us to a recursive procedure for computing determinants. A 5 × 5 determinant, for example, 

reduces to a computation involving 4 × 4 determinants, each of which reduces to computations involving 

3 × 3 determinants, which then reduce to computations involving 2 × 2 determinants, which are easy. 

This process of reducing a determinant to determinants of lower degree is called cofactor expansion.* 

Since it involves picking a row or column along which to “expand”, we refer more specifically to, say, 

cofactor expansion along the 1st row, or cofactor expansion along the 5th column, or what have you. 

In practice, cofactor expansion is most convenient when a row or column consists mainly of zeros, 

because in that case, each zero entry yields a zero term in the cofactor expansion. A few examples will 

make the idea clear.   

 
* The name is explained by some terminology traditionally associated with the technique. First, the matrix we get by crossing out 

row 𝑗 and column 𝑘 is called the minor associated with the 𝑗, 𝑘th entry; next, the minor’s determinant multiplied by (−1)𝑗+𝑘  
(i.e. the + or − dictated by the “checkerboard matrix”) is called the the 𝑗, 𝑘th entry’s cofactor. With that terminology in place, 
we can summarize the technique of cofactor expansion as follows: 

A matrix’s determinant is a weighted sum of any row’s (or column’s) entries, where the weights are the entries’ cofactors. 
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Example 1. Use cofactor expansion to compute the determinant of 𝐴 = (
1    2 3
4    5 0
1    2 −2

). 

Solution. Let’s expand along the second row to take advantage of that zero: 

det (
1    2 3
𝟒    𝟓 𝟎
1    2 −2

) = −𝟒det ( 
2 3
2 −2

 ) + 𝟓det ( 
1 3
1 −2

 ) − 𝟎 

         = −4(−10) + 5(−5) = 𝟏𝟓. 

Observe that the first and third terms in the initial expansion are subtracted owing to the positions 

of entries 4 and 0 in the checkerboard matrix of plusses and minuses. Also, I didn’t bother writing 

down the determinant associated with the 0 in the third term, because there would be no point: 

whatever it is, it will be multiplied by zero.                     

Now let’s try this with a larger matrix. 

Example 2. Use cofactor expansion to compute the determinant of the matrix 

𝐵 =(

−8    2    3 7
1    2    0 3
4    5    0 0
1    2    0 −2

 ). 

Solution. Using cofactor expansion on the third column to profit from all those zeros, we find that 

det(

−8    2    𝟑 7
1    2    𝟎 3
4    5    𝟎 0
1    2    𝟎 −2

 ) = 𝟑det (
1    2 3
4    5 0
1    2 −2

) − 𝟎 + 𝟎 − 𝟎 = 𝟑(15) = 𝟒𝟓. 

Why was the first term added? Well, the “checkerboard matrix” of plusses and minuses always 

has a + in the upper left corner, so moving two spots to the right brings us to another +. 

Incidentally, the one 3 × 3 matrix in our cofactor expansion was matrix 𝐴 from Example 1.           

Computer programmers turn up their noses at cofactor expansion – with reason. Roughly speaking, 

computing an 𝑛 × 𝑛 determinant by cofactor expansion along on a random row or column requires about 

𝑛! arithmetic operations, whereas computing it by means of row reduction requires about 𝑛3 operations. 

Hence, cofactor expansion is a much more “expensive” way to compute a determinant (when 𝑛 > 5). 

A computer program using row-reduction to compute a 20 × 20 determinant matrix will grind through 

the roughly 203 = 8000 arithmetic operations in no time, but another that uses cofactor expansion will 

never reach the end of its task, which requires 20! ≈ 2 million trillion operations. 

 

Exercises. 

22. Verify the result of Example 1 by recomputing that determinant in the following ways: 

a) With the 3 × 3 “quick formula”         b) cofactor expansion on column 3         c) cofactor expansion on row 1 

23. Use cofactor expansion to find the determinants of the matrices in Exercise 16.



 

 

 

 

 

 

 

Chapter 7 

Eigenstuff 
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Eigenvectors and their Eigenvalues 
Keep on a straight line… I don't believe I can. 

Trying to find a needle in a haystack – 

Chilly wind, you're piercing like a dagger, it hurts me so. 

Nobody needs to discover me. I'm back again. 

 - Peter Gabriel as a world-weary eigenvector in “Looking for Someone” (from Genesis’s album Trespass).  

 

German-English dictionaries will tell you that eigen means “characteristic”, “particular”, or “[one’s] own”, 

but these don’t fully convey eigen’s mathematical significance. In linear algebra, eigen means something 

like “essence-revealing”. A linear map’s eigen things (eigenvectors, eigenvalues, eigenbasis, eigenspaces) 

reveal its geometric essence. 

When blasted by the chilly wind of a linear map, most vectors get blown off the line on which they lie, 

but a few, hidden like needles in the vector haystack, manage to “keep on a straight line”; the map merely 

scales them. We call these the linear map’s eigenvectors. Whenever we can discover a basis for a space 

made up of eigenvectors relative to a map, we have grasped the map’s geometric action on the space: 

It simply scales the space by various factors along various axes. (As for vectors that don’t lie on the axes, 

the map just sums their scaled components relative to those axes.) Now for our formal definitions. 

 

 

 

 

 

Some examples will clarify these two simple definitions.   

Example 1. Let 𝐴 = (
3 1
0 2

), a matrix whose action is depicted below. 

First, let’s see what 𝐴 does to the vector corresponding to point 𝑄:   

𝐴 (
1
1
) = (

3 1
0 2

) (
1
1
) = (

4
2
). 

Since the output vector is not a scalar multiple of the input vector 

(equivalently, since 𝐴 maps point 𝑄 to 𝑄′, knocking it off the line 𝑂𝑄), 

we conclude that 

(
1
1
) is not an eigenvector of 𝐴. 

Now let’s consider 𝐴’s effect on the vector corresponding to point 𝑃: 

𝐴 (
𝟏

−𝟏
) = (

3 1
0 2

) (
1

−1
) = (

2
−2
) = 𝟐(

𝟏
−𝟏
). 

Here, the output vector is just the input vector scaled by 2. Thus,  

(
1

−1
) is an eigenvector of 𝐴, with eigenvalue 2. 

Another eigenvector of 𝐴 is 𝐢 itself; as the figure shows, it gets scaled by 3. Thus, 𝐢 is an eigenvector 

of 𝐴 with eigenvalue 3.                             

Definitions. A nonzero vector 𝐯 is an eigenvector of a linear map 𝑇 (or matrix 𝐴) 

if there is some scalar 𝜆 such that 𝑇(𝐯) = 𝜆𝐯. (Or 𝐴𝐯 = λ𝐯.) 

The scalar 𝜆 is called an eigenvalue of the map (or matrix). 

(We also say it is the eigenvalue corresponding to the eigenvector 𝐯.)   
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Example 2. Let 𝑇 be a counterclockwise rotation of ℝ2 about the origin by 90°. Obviously, every 

nonzero vector changes its direction when subjected to this rotation (none of them manages to 

“keep on a straight line”) so this rotation has no eigenvectors.                 

Example 3. Let 𝑅 be a reflection of ℝ3 across the 𝑥𝑦-plane. Thinking about this geometric 

operation, you should be able to convince yourself of the following three things: 

➢ All vectors in the 𝑥𝑦-plane are eigenvectors of 𝑅 (with eigenvalue 1). 

➢ All vectors lying along the 𝑧-axis are eigenvectors of 𝑅 (with eigenvalue −1). 

➢ No other vectors in  ℝ3 are eigenvectors. 

Be sure you can understand the three preceding statements by visualizing the reflection.      

 

Now that you know what eigenvectors and eigenvalues are, here is our next big definition: 

We love eigenbases because if we represent a map relative to an eigenbasis, we get a diagonal matrix.* 

We love diagonal matrices because their geometric action is intuitive (mere scaling along the basis “axes”) 

and their algebraic properties are nice (their inverses, determinants, and powers are all easy to compute). 

Looking back at Example 1, we see that ℝ2 has - relative to matrix 𝐴 - the following eigenbasis:  

 Eigenbasis ℬ:    𝐛1 = (
1

−1
)   and   𝐛2 = (

1
0
). 

Matrix 𝐴 merely scales these two linearly independent vectors by factors of 2 and 3 respectively. If we let 

𝑇 be the map whose matrix representation relative to the standard basis is 𝐴, then 𝑇’s representation 

relative to the eigenbasis ℬ, will - as promised - be diagonal: 

[𝑇]ℬ = (
2 0
0 3

). 

We were able to get this diagonal representation only because the map had enough linearly independent 

eigenvectors to form an eigenbasis. Not all maps are like this.   

When a matrix or map does have enough linearly independent eigenvectors to form an eigenbasis, 

we say that it is diagonalizable, since we can then use that eigenbasis to represent it as a diagonal matrix. 

Thus, 𝐴 from Example 1 is diagonalizable.   

In contrast, the 90° rotation in Example 2 has no eigenvectors at all, so there clearly can’t be an 

eigenbasis for ℝ2 relative to it. Equivalently, a 90° rotation in the plane is not a diagonalizable map. 

In Example 3, reflection 𝑅 (reflection in the 𝑥𝑦-plane) is diagonalizable, since it admits an eigenbasis. 

In fact, the standard basis is an eigenbasis here, so 𝑅’s standard matrix representation is diagonal:  

[𝑅]ℰ = (
1    0 0
0    1 0
0    0 −1

). 

 
* Proof: Suppose 𝐛1, 𝐛2, … , 𝐛n is an eigenbasis ℬ (with corresponding eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛) relative to some linear map 𝑇. 

Then for each 𝑖, we have 𝑇𝐛𝑖 = 𝜆𝑖𝐛𝑖 , so [𝑇𝐛𝑖]ℬ is the column vector whose 𝑖th entry is 𝜆𝑖 and whose other entries are all zeros. 
Since [𝑇]ℬ consists of these column vectors, it is diagonal as claimed. Moreover, the diagonal entries are 𝑇’s eigenvalues. 

Definition. An eigenbasis relative to an 𝑛 × 𝑛 matrix (or linear transformation of ℝ𝑛) 

is a basis of ℝ𝑛 consisting entirely of eigenvectors of the matrix/map.  
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Discovering an eigenvector is like finding gold. When we find one eigenvector, we take it as a sign that 

a whole “eigenvector vein” is near, spurring us to the happy task of uncovering our treasure’s full extent. 

Each eigenvector belongs to a subspace consisting entirely of eigenvectors, all with the same eigenvalue. 

To see why, first observe that if 𝐯 is an eigenvector of 𝐴 with eigenvalue 𝜆, then so are all its nonzero 

scalar multiples. (Proof: For any scalar 𝑐, we have 𝐴(𝑐𝐯) = 𝑐𝐴(𝐯) = 𝑐(𝜆𝐯) = (𝑐𝜆)𝐯 = (λ𝑐)𝐯 = λ(𝑐𝐯).*) 

Moreover, if 𝐯 and 𝐰 are any two eigenvectors with the same eigenvalue 𝜆, then their sum will be a third 

such eigenvector. (Proof: 𝐴(𝐯 + 𝐰) = 𝐴(𝐯) + 𝐴(𝐰) = 𝜆𝐯 + 𝜆𝐰 = 𝜆(𝐯 +𝐰).) The set of eigenvectors 

with eigenvalue 𝜆 is thus closed under scalar multiplication and vector addition. Hence, we may conclude 

that this is a subspace, as claimed.† Indeed, it has a special name, which I’ll bet you can guess:  

 Example 1’s matrix has two eigenvalues, so relative to it, ℝ2 has two eigenspaces, depicted at left. 

Example 2’s map (90° rotation) lacks 

eigenvalues, so it has no associated 

eigenspaces. Example 3’s reflection in 

the 𝑥𝑦-plane has two eigenvalues, so 

relative to that reflection, ℝ3 has two 

eigenspaces, depicted at right. 

The figures also make it clear that 

we can find an eigenbasis relative to 

each of these two maps. For example, 

relative to the reflection, we’ll get an 

eigenbasis for ℝ3 by taking any two 

linearly independent vectors in 𝐸1 

plus any one nonzero vector in 𝐸−1. 

 

 
* The Footnote Pedant wishes to point out that the first equals sign in this chain is justified by a basic linearity property (Exercise 

14B in Chapter 3); the second is justified because we were given that 𝐯 is an eigenvector with eigenvalue 𝜆; the third and fifth 
are justified by an associative property of scalar multiplication (mentioned in a footnote near the beginning of Chapter 1); the 
fourth is the commutativity of multiplication of real numbers. 

† The Footnote Pedant is now standing athwart my last sentence, yelling STOP. “You said,” he declares, “that the set is closed 
under scalar multiplication, but you’ve only proved that it is closed under multiplication by nonzero scalars! Aren’t you sweeping 
something under the rug? Scaling any eigenvector by 0 turns it into 𝟎, which isn’t an eigenvector because we defined 
eigenvectors to be nonzero. Therefore, the set of eigenvectors with eigenvalue 𝜆 is not closed under scalar multiplication!” 
Strictly speaking, he’s right. I could satisfy him by replacing the offending phrase “the set of all eigenvectors with eigenvalue 𝜆” 
with this: “the set of all vectors 𝐯 with the property that 𝐴𝐯 = λ𝐯”, which includes all the eigenvectors and also the zero vector, 
since 𝐴(𝟎) = 𝜆𝟎, which holds, of course, because every linear map sends 𝟎 to 𝟎. I’ll not do that, though – except down here in 
the footnotes – since that reformulation is much less memorable, and the discrepancy is minor. 

A more interesting thinker than the Footnote Pedant would ask this: “Why did we define eigenvectors to be nonzero in the 
first place? Why don’t we just drop that requirement?” It’s a good question. The answer is that if we allowed 𝟎 to count as an 
eigenvector, then every real number would be an eigenvalue of every matrix, since 𝐴(𝟎) = 𝟎 = 𝑟𝟎 for all real 𝑟. That won’t do. 
Moreover, if 𝟎 were considered an eigenvector, then it wouldn’t have a particular eigenvalue the way every other eigenvector 
does; it would have infinitely many eigenvalues. This is a mess. Hence, we exclude 𝟎 from the eigenvectors to preserve the 
statement “every eigenvector has a unique eigenvalue”, much as we exclude 1 from the primes to preserve the statement 
“every number can be factored into a unique product of primes.” 

Definition. Each eigenvalue 𝜆 of a map/matrix has a corresponding eigenspace, denoted 𝐸𝜆, 

which is a subspace consisting of all eigenvectors with eigenvalue 𝜆 (and 𝟎, too).  
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Exercises. 

1. Is (
   4
−3
   1
) an eigenvector of (

    3     7    9
−4 −5    1
   2    4    4

  )? If so, find the corresponding eigenvalue. 

2. Describe the eigenvalues and eigenspaces of the following linear transformations of ℝ2. 

a) The zero map (which maps everything to the origin).  

b) 180° rotation about the origin. 

c) Orthogonal projection onto the line 𝑦 = 2𝑥.     

d) Reflection across the 𝑦-axis. 

3. Let 𝐴 be an invertible 𝑛 × 𝑛 matrix. Suppose 𝐯 is an eigenvector of 𝐴 with eigenvalue 𝜆. Determine whether 𝐯 is 

also an eigenvector of each of the following matrices – and if so, with what eigenvalue. Explain your answers. 

a) 2𝐴        b) 𝑛𝐴        c) 𝐴2        d) 𝐴𝑛        e) 𝐴−1        f) 𝐼        g) 2𝐴 + 3𝐼. 

4. “Eigenstuff” is defined only for square matrices. Explain why. 

5. What are the only possible eigenvalues of an orthogonal matrix? Explain your answer. 

6. (Extending the Invertible Matrix Theorem) In Exercise 19 of Chapter 5, you saw that statements A - M in the list 

below were equivalent statements about an 𝑛 × 𝑛 matrix 𝐴. Explain why we can add statement N to the list:  

a) 𝐴 is invertible.          b) rref(𝐴) = 𝐼.            c) 𝐴𝐱 = 𝐛 has a unique solution for every vector 𝐛. 

d) 𝐴’s columns are linearly independent.       e) 𝐴’s columns span ℝ𝑛.       f) 𝐴’s columns constitute a basis for ℝ𝑛.       

g) ker(𝐴) = 𝟎.             h) im(𝐴) = ℝ𝑛.           i) rank(𝐴) = 𝑛.                     j) det 𝐴 ≠ 0. 

k) 𝐴’s rows are linearly independent.             l) 𝐴’s rows span ℝ𝑛.           m) 𝐴’s rows constitute a basis for ℝ𝑛. 

n) 𝐴 doesn’t have 0 as an eigenvalue.  

To reiterate, the moral of the invertible matrix theorem is that square matrices come in two types: invertible 

matrices (which satisfy all 14 of those conditions) and noninvertible matrices (which satisfy none of them). 

7. To appreciate why expressing everything an eigenbasis makes computations so simple… 

a) Suppose 𝐛1, 𝐛2, 𝐛3 is an eigenbasis ℬ (with corresponding eigenvalues 3, 8, -2) relative to a linear map 𝑇 on ℝ3. 

Suppose we have a vector 𝐯 whose ℬ-coordinates are (4, −2, 5). What will the ℬ-coordinates of 𝑇𝐯 be? 

b) Given the previous part’s setup, if 𝐱’s ℬ-coordinates are (𝑥1, 𝑥2, 𝑥3), what will the ℬ-coordinates of 𝑇𝐱 be? 

b) More generally, suppose 𝐛1, 𝐛2, … , 𝐛n is an eigenbasis ℬ (with corresponding eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛) relative 

to some linear map 𝑇. If 𝐱 is a vector with ℬ-coordinates (𝑥1, 𝑥2, … , 𝑥𝑛), then what will 𝑇𝐱’s ℬ-coordinates be? 

8. As you now know, if ℬ is an eigenbasis relative to a map 𝑇, then [𝑇]ℬ is a diagonal matrix representation of 𝑇. 

This is important, so explain in your own words why this is true and what the diagonal entries of [𝑇]ℬ  will be. 

9. (Eigendecomposition) We can sometimes decompose a given matrix into a product of several simpler factors. 

(Such a matrix decomposition is analogous to factoring a polynomial or factoring an ordinary whole number.) 

Of the various types of matrix decompositions, one of the most common and useful is called eigendecomposition. 

An eigendecomposition is like an X-ray of a matrix, exposing its normally hidden eigenstuff to plain view. As you’ll 

learn in this exercise, a matrix can be eigendecomposed if and only if it admits an eigenbasis. Let’s get to work. 

We begin by noting that we can view any matrix 𝐴 as the standard matrix of some linear map 𝑇 (so that 𝐴 = [𝑇]ℰ). 

Moreover, if this map has enough linearly independent eigenvectors 𝐛1, 𝐛2, … , 𝐛𝑛 to form an eigenbasis ℬ, 

we know that [𝑇]ℬ is a diagonal matrix Λ, whose diagonal entries are eigenvalues corresponding to the 𝐛𝑖.
* Now… 

 
* The pointy symbol Λ is a Greek letter: capital lambda. We use it in this context to remind ourselves that this diagonal matrix’s 

entries are eigenvalues, which, of course, we also represent by lambdas, albeit lower-case ones: 𝜆.  
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a) Let 𝑉 = (

| | |
𝐛1 𝐛2 ⋯ 𝐛𝑛
| | |

), the columns of which “store” the standard coordinates of 𝐴’s eigenbasis vectors. 

I claim that matrix 𝑉 is invertible. Explain why this is so.  

b) I claim that any matrix 𝐴 that admits an eigenbasis can be “eigendecomposed” into a product of three matrices: 

𝐴 = 𝑉Λ𝑉−1, 

where the diagonal matrix Λ stores the eigenvalues, and 𝑉 stores an eigenvector corresponding to each one 

(in the corresponding column). Your problem: Justify my claim. 

c) For instance, consider matrix 𝐴 from Example 1. We found that it has an eigenbasis consisting of the vectors 

𝐛1 = 𝐢 − 𝐣 and  𝐛2 = 𝐢 with corresponding eigenvalues 𝜆1 = 2 and 𝜆2 = 3. In this case, what are the matrices 

𝑉, Λ, and 𝑉−1? Check your eigendecomposition by multiplying out 𝑉Λ𝑉−1 and verifying that the product is 𝐴. 

d) (Eigendecomposition helps us raise a matrix to a power)  

Eigendecomposition is useful when we want to apply a linear map to something, then apply the same linear 

map to the output, then apply the map to that output, and so forth. (Such iterative procedures are common in 

statistics, numerical analysis, machine learning, and even in Google’s Page Rank algorithm.) The situation I’ve 

just described yields a computation of the form 

𝐴 (𝐴 (𝐴(𝐴⋯(𝐴(𝐯))⋯ ))), 

and since function composition corresponds to matrix multiplication, this reduces to 𝐴𝐴𝐴𝐴⋯𝐴(𝐯), or more 

compactly, to 𝐴𝑛(𝐯). Alas, raising a matrix to a high power, especially if the matrix is large (as they so often are 

in applications) is computationally “expensive”, even for a very fast computer. 

For example, suppose 𝐴 is a 100 × 100 matrix, and we wish to raise it to some high power. How many 

computations must a computer do to carry such a computation out by brute force? Well, just to find 𝐴2 = 𝐴𝐴 

involves doing 10,000 dot products (one for each entry in the matrix product), and each dot product involves 

100 products (one for each component) and 99 sums. That works out to almost 2 million arithmetic operations 

to multiply 𝐴 by itself just once. Grinding out 𝐴𝑛 by brute force would require (𝑛 − 1) of these computationally 

expensive matrix multiplications. Clearly, we’ll want to minimize the number of such matrix multiplications that 

our computer will have to do. A way to reduce expenses is to find an eigendecomposition of 𝐴 (if it has one) 

and raise that to the 𝑛th power, because if 𝐴 = 𝑉Λ𝑉−1, it follows that 

𝐴𝑛 = (𝑉Λ𝑉−1)𝑛 = (𝑉Λ𝑉−1)(𝑉Λ𝑉−1)(𝑉Λ𝑉−1)⋯ (𝑉Λ𝑉−1)⏟                        
𝑛 of these trios

. 

The associativity of matrix multiplication lets us regroup those parentheses, pairing each trio’s concluding 𝑉−1 

with the 𝑉 from the trio that follows. Such pairs cancel each other out, leaving us with this: 

𝐴𝑛 = 𝑉Λ𝑛𝑉−1. 

Your problem: Explain why this expression for 𝐴𝑛 is much less computationally expensive (when 𝑛 is large) 

than the brute force approach to 𝐴𝑛 described above. [Hint: Raising a diagonal matrix to the 𝑛th power is easy. 

Recall Exercise 30e from Chapter 4.]  

e) Given matrix 𝐴 from Example 1, compute 𝐴10 by hand using the eigendecomposition of 𝐴 you found in Part C. 

Then try computing 𝐴 by brute force, too. (It’s ok if you eventually give up. The point is to feel the difference 

between the two approaches so that eigendecomposition’s superiority will be palpable to you.)  

10. (A fun curiosity) If a square matrix has the property that the entries on each row add up to the same number 𝑠, 

then 𝑠 is an eigenvalue of the matrix. Explain why this is so.   
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Finding the Eigenstuff 
Mary had a little 𝜆, little 𝜆, little 𝜆… 

 - Mrs. Traditional  

 

Now that you know what a matrix’s eigenthings are, it’s time to discuss how we find a matrix’s eigenthings. 

Since each eigenvector 𝐯 is scaled by some particular eigenvalue 𝜆, we’ll want to seek eigenthings in pairs. 

Namely, given any square matrix 𝐴, we want to find all pairs of nonzero vectors 𝐯 and scalars 𝜆 such that 

𝐴𝐯 = 𝜆𝐯. 

This is the second most important equation in all linear algebra (behind only the ubiquitous 𝑨𝐱 = 𝐛). 

Let’s rewrite it in an equivalent form where 𝐯 appears only once: 

𝐴𝐯 = 𝜆𝐯        ⟺         𝐴𝐯 − 𝜆𝐯 = 𝟎        ⟺         𝐴𝐯 − (𝜆𝐼)𝐯 = 𝟎       ⟺        (𝐴 − 𝜆𝐼)𝐯 = 𝟎.* 

It follows from this last reformulation that a given nonzero vector 𝐯 and a given scalar 𝜆 will be one of 𝐴’s 

eigenvector/eigenvalue pairs if and only if (𝐴 − 𝜆𝐼) maps the given nonzero vector 𝐯 to 𝟎. 

This reformulation of the original equation may seem odd, but it delivers crucial geometric insights: 

First, recall that a nonzero vector 𝐯 can get mapped to 𝟎 by a matrix (here, 𝐴 − 𝜆𝐼) only when the matrix 

collapses at least one dimension of the space on which it acts. (Otherwise, the matrix would be invertible, 

in which case it would only map 𝟎 to 𝟎.) Second, recall that a matrix induces a dimensional collapse 

precisely when the matrix’s determinant is zero. 

Putting this all together, we see that our original equation for eigenvector/eigenvalue pairs will be 

satisfied by a nonzero vector 𝐯 (and its scalar mate 𝜆) precisely when 

det(𝐴 − 𝜆𝐼) = 0. 

Notably, this equation doesn’t explicitly refer to the eigenvector half 𝐯 of the pairs that we are seeking. 

It’s actually a good thing that 𝐯 is hiding, since this temporarily narrows our focus to a single unknown, 𝜆. 

If we can solve the equation det(𝐴 − 𝜆𝐼) = 0 for our unknown 𝜆, we’ll have all the eigenvalues of 𝐴. Once 

we have them, they’ll confess – after some algebraic coaxing – the locations of the eigenspaces where 

their eigenvector mates live. We can then see if those eigenspaces contain enough linearly independent 

eigenvectors to build an eigenbasis, and if so, we can use it to carry out an eigendecomposition of 𝐴. 

But before we go that far, let’s begin with a quick example that concentrates on eigenvalues alone. 

That way, we’ll see how the first – and most crucial – piece of the puzzle plays out in a concrete instance. 

Example 1. Find the eigenvalues of 𝐴 = (
1 2
4 3

). 

Solution. As discussed above, 𝐴’s eigenvalues are the solutions of det(𝐴 − 𝜆𝐼) = 0.  

Working out that determinant reveals that the left side of the equation is just a polynomial in 𝜆: 

det(𝐴 − 𝜆𝐼)  = det ((
1 2
4 3

) − (
𝜆 0
0 𝜆

)) = det (
1 − 𝜆 2
4 3 − 𝜆

)  =   𝜆2 − 4𝜆 − 5. 

The roots of that polynomial, and hence 𝐴’s eigenvalues, are 𝟓 and −𝟏.                                              

 
* The only potentially mysterious step here is rewriting 𝜆𝐯 as (𝜆𝐼)𝐯. You should convince yourself that this substitution is valid 

(i.e. that matrix 𝜆𝐼’s effect on 𝐯 is the same as merely scaling 𝐯 by 𝜆). We took that step so that both terms in the expression 
would be matrix-vector multiplications, from which we could then factor out the common vector 𝐯.  
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If 𝐴 is an 𝑛 × 𝑛 matrix, det(𝐴 − 𝜆𝐼) always turns out to be a 𝑛th-degree polynomial. A natural name 

for this eigenvalue-laden polynomial would be 𝐴’s “eigenpolynomial”, but alas, it’s called something else:* 

To repeat, 𝐴’s characteristic polynomial is important because its roots are 𝐴’s eigenvalues. And once we 

have its eigenvalues, finding the other eigenstuff is as simple as following your nose, as we’ll now see. 

Example 2. (Continuing Example 1.) Find the eigenspaces corresponding to the matrix 

𝐴 = (
1 2
4 3

). 

Then, if 𝐴 admits an eigenbasis, find one, and use it to create an eigendecomposition of 𝐴.†  

Solution. In Example 1, we already found 𝐴’s eigenvalues: 5 and −1. 

By definition, the eigenspace 𝐸5 consists of all vectors 𝐯 such that 𝐴𝐯 = 5𝐯. 

Using an algebraic trick from the previous page, we’ll rewrite this equation in an equivalent form: 

(𝐴 − 5𝐼)𝐯 = 𝟎. 

Now we’re in familiar territory. We’ll just rewrite this last equation as an augmented matrix,  

(
−4 2
4 −2

 | 
0
0
), 

and solve the system. Its solutions, as you should verify, are all the points on the line 𝑦 = 2𝑥. 

Thus, 𝐸5 is the line 𝑦 = 2𝑥.  

The eigenspace 𝐸−1 consists of all vectors 𝐯 such that 𝐴𝐯 = −𝐯. Or equivalently, all vectors 𝐯 

such that (𝐴 + 𝐼)𝐯 = 𝟎. We can find them by solving 

(
2 2
4 4

 | 
0
0
). 

When we do so, we find, as you should verify, that every point on the line 𝑦 = −𝑥 is a solution. 

Thus, 𝐸−1 is the line 𝑦 = −𝑥.  

Any two linearly independent eigenvectors of 𝐴 will form an eigenbasis, 

so we can clearly get one by taking one eigenvector from each eigenspace – 

such as these ones (expressed standard coordinates): 

(
1
2
) with eigenvalue 5            and            (

1
−1
) with eigenvalue −1. 

It follows from Exercise 9B that 𝐴’s corresponding eigendecomposition is 

(
1 2
4 3

) = (
1 1
2 −1

)(
5 0
0 −1

)(
1/3 1/3
2/3 −1/3

), 

as you can verify by multiplying out the right side.                   

 
* Well, sort of. “Characteristic” is a translation of eigen, so it might as well be “eigenpolynomial”. But perhaps this word, cobbled 

together from German (eigen), Greek (poly), and Latin (nomen), was deemed too outré for use by some dreary linguistic purist. 

† The notion of an eigendecomposition was introduced in Exercise 9. 

Definition. If 𝐴 is any square matrix, det(𝐴 − 𝜆𝐼) is called 𝐴’s characteristic polynomial. 
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If you watch someone (your professor, a friend, or someone online) computing a matrix’s eigenspaces, 

it can look like a mysterious algorithm, especially if he or she compresses some of the preliminary steps. 

Indeed, I’ve seen some students learn to carry out the process in a mindless algorithmic manner, which 

runs something like this: “If one of 𝐴’s eigenvalues is 42 (or whatever), then to find 𝐸42, we subtract 42 

from each diagonal entry of 𝐴, then we turn the result into an augmented matrix by appending a column 

of zeros, and finally we solve that system. The solutions are the eigenvectors that make up 𝐸4.” That recipe 

will indeed produce the desired eigenspace, and there’s nothing wrong with using it – provided you 

understand why it works. If you use it without understanding why it works, you aren’t learning linear 

algebra; you are just following orders. On the other hand, if you understand why it works, there’s no 

reason to memorize that sequence of steps in the first place. After all, it takes only a few seconds to reason 

through the entire process, justifying every step: “By definition, 𝐸42 consists of all vectors that satisfy 

𝐴𝐯 = 42𝐯. To find these vectors, we’ll rewrite that equation as (𝐴 − 42𝐼)𝐯 = 𝟎, since we can easily turn 

this into an augmented matrix whose underlying system we can then solve with Gaussian elimination.” 

I encourage you to think through the process this way rather than memorize an algorithm. 

Once you have the eigenspaces of an 𝑛 × 𝑛 matrix, it’s easy to see whether the underlying map is 

diagonalizable: If the eigenspaces’ dimensions add up to 𝑛, we can gather up enough linearly independent 

eigenvectors to form an eigenbasis, which we can then use to represent the map as a diagonal matrix. 

But if sum of the eigenspaces’ dimensions falls short of 𝑛, we’re out of luck: The map doesn’t admit an 

eigenbasis, so we can’t represent it as a diagonal matrix. (Incidentally, matrices that can’t be diagonalized 

are sometimes called defective matrices.) 

Let’s do one another example of finding eigenstuff.  

Example 3. Find the eigenspaces of  

𝐴 = (
1 0 2
0 3 0
2 0 1

). 

Solution. 𝐴’s characteristic polynomial is 

det(𝐴 − 𝜆𝐼) = det (
1 − 𝜆 0 2
0 3 − 𝜆 0
2 0 1 − 𝜆

). 

Doing cofactor expansion on the second row and massaging the resulting expression reveals the 

characteristic polynomial to be (−1)(3 − 𝜆)2(𝜆 + 1). Thus, 𝐴’s eigenvalues are 𝟑 and −𝟏. 

The eigenspace 𝐸3 consists of all vectors 𝐯 such that 𝐴𝐯 = 3𝐯. We can rewrite this equation 

in the equivalent form (𝐴 − 3𝐼)𝐯 = 𝟎, so we can solve it by row-reducing an augmented matrix:  

(
−2    0 2
0    0 0
2    0 −2

 |  
0
0
0
) 
+𝑅1

 (
−2   0   2
0   0  0
0   0  0

 |  
0
0
0
) 
÷ (−2)

 ( 
1    0 −1
0    0 0
0    0 0

 |  
0
0
0
). 

From this, we see that 𝑥 = 𝑧, while there are no constraints on 𝑦 or 𝑧, so these are free variables. 

Hence, solutions have the form 

(
 𝑥 
𝑦
𝑧
) = (

 𝑡 
𝑠
𝑡
) = 𝑡 (

1
0
1
) + 𝑠 (

0
1
0
). 

That is, the eigenspace 𝐸3 is a plane in ℝ3: the span of the two independent vectors 𝐢 + 𝐤 and 𝐣. 
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As for the eigenspace 𝐸−1, this consists of all vectors 𝐯 such that 𝐴𝐯 = −𝐯. We’ll rewrite this 

in the form (𝐴 + 𝐼)𝐯 = 𝟎, and then solve it by row-reducing an augmented matrix: 

(
2 0 2
0 4 0
2 0 2

 | 
0
0
0
) 
÷ 2
÷ 4
÷ 2

 (
1 0 1
0 1 0
1 0 1

 | 
0
0
0
) 
−𝑅1

 (
1 0 1
0 1 0
0 0 0

 | 
0
0
0
). 

From this we see that 𝑧 = −𝑥, and that 𝑦 = 0. Hence, the solutions have the form 

(
 𝑥 
𝑦
𝑧
) = (

𝑡
0
−𝑡
  ) = 𝑡 (

1
0

−1
 ). 

That is, the eigenspace 𝐸−1 is a line in ℝ3: the span of the vector 𝐢 − 𝐤. 

To sum up, 𝐴’s eigenvalues are 3 and −1, and the corresponding eigenspaces are: 

𝐸3: span of (
1
0
1
) and (

0
1
0
);                  𝐸−1: span of (

1
0

−1
).                                          

Although I didn’t ask for it in the previous example, you should be able to see that 𝐴 admits an eigenbasis: 

any two linearly independent vectors from 𝐸3 plus any nonzero vector from 𝐸−1 will do. For example, 

vectors 𝐢 + 𝐤,    𝐣, and 𝐢 − 𝐤  make up one eigenbasis. With respect to that basis, the linear map whose 

standard matrix is 𝐴 will have a diagonal representation, and its diagonal entries will be 3, 3, and −1. 

You should be able to write down the related eigendecomposition of 𝐴, too.  

 

Once we’ve found a matrix’s eigenvalues, the rest of its eigenstuff comes easily. But there’s a catch: 

Finding the eigenvalues usually isn’t easy. Well… finding the eigenvalues of a 2 × 2 matrix is easy, since 

2 × 2 matrices have quadratic characteristic polynomials, whose roots we can always find with the 

quadratic formula. But alas, 3 × 3 and 4 × 4 matrices have cubic and quartic characteristic polynomials. 

Cubic and quartic analogs of the quadratic formula do exist, but they are so appallingly complicated that 

no one in his or her right mind knows them.* And for larger matrices, the situation is considerably worse: 

No algebraic formula for the roots of 5th (or higher) degree polynomials exists.† So how, in applications, 

do we find large matrices’ eigenvalues? We approximate them. Laborers in the numerical linear algebra 

mines have worked out eigenvalue algorithms to approximate matrices’ eigenvalues as closely as we like. 

These sophisticated iterative algorithms – which are built into computer programs that scientists and 

engineers use every day – typically don’t involve the characteristic polynomial. Yet even for large matrices, 

the characteristic polynomial remains a vital theoretical touchstone. For example, in Exercise 13, you’ll 

use it to prove an important fact about the eigenvalues of triangular matrices – of any size.  
 

 
* The cubic and quartic formulas are historically important. Their discovery in 16th-century Italy was the first original achievement 

of European mathematics since the ancient Greeks and initiated the mathematical Renaissance. Remarkably, their discovery 
involved the first real use of complex numbers in mathematics – and this was at a time when even negative numbers, much less 
their square roots, were considered hopelessly absurd fictions. The story of the cubic, which includes mathematical duels, 
flashes of insight, vows of secrecy made and broken, and a colorful cast of characters (above all Niccolò Tartaglia and Gerolamo 
Cardano), is engagingly told by Paul Nahin in the first chapter of his semi-popular book on complex numbers, An Imaginary Tale. 

† To be clear, I do not mean that no one has found such a formula yet. I mean that there isn’t one and there never will be one. 
This was proved in the 19th century in yet another fascinating episode of mathematical history – one that ultimately gave birth 
to large portions of what we now call abstract algebra – group theory and Galois theory in particular. 
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Exercises. 

11. a) Remind yourself why a matrix 𝐴’s eigenvalues are the zeros of its characteristic polynomial, det(𝐴 − 𝜆𝐼). 

b) If, say, 8 is an eigenvalue of matrix 𝐴, explain how to find the eigenspace 𝐸8, and why your method works. 

12. For each of the following, find the eigenvalues, describe the corresponding eigenspaces, and determine whether 

the matrix admits an eigenbasis. If so, state an eigenbasis, and give the corresponding eigendecomposition. 

a) (
3 2
3 8

)           b) (
−2 6
−2 5

)           c) (
2 3

−4 −2
 )          d) (

2 2
−8 −6

 )          

e) (
5 2 3
0 5 4
0 0 1

)          f) ( 
3 −2    5
1 0    7
0 0    2

 )           g) (
1 1 1
1 1 1
1 1 1

) 

13. (Triangular matrices’ eigenvalues) In Part E of the previous problem, you saw that the eigenvalues of a triangular 

matrix turned out to be the entries on its main diagonal. Was that a coincidence? It was not! Prove the following: 

Theorem. If 𝑀 is a triangular matrix, then 𝑀’s eigenvalues are the entries on its main diagonal. 

This gives us another reason to like triangular matrices: We can see their eigenvalues at a glance.  

14. (The transpose’s eigenvalues) 

a) Justify each equals sign in the following chain, which pertains to every square matrix 𝐴: 

det(𝐴 − 𝜆𝐼) = det((𝐴 − 𝜆𝐼)𝑇) = det(𝐴𝑇 − (𝜆𝐼)𝑇) = det(𝐴𝑇 − 𝜆𝐼). 

You’ve just shown that every square matrix and its transpose share the same characteristic polynomial. 

b) Can we conclude that 𝐴 and 𝐴𝑇 will have the same eigenvalues? What about their eigenvectors? 

c) Suppose that a square matrix 𝐴 has the property the entries on each column sum up to the same number 𝑠.* 

What, if anything, can we conclude about 𝐴’s “eigenstuff”? (Compare Exercise 10.) 

15. Invertibility and diagonalizability are completely unrelated concepts. 

To reinforce this fact, I’ve presented four matrices below that cover all possible combinations of invertibility and 

diagonalizability. Verify this, and fill in the table below. 

𝐴 = (
1 0
0 0

) ,                𝐵 = (
1 0
0 1

) ,                𝐶 = (
0 1
0 0

) ,               𝐷 = (
1 1
0 1

) 

 

 

 

 

 

16. You’ve seen 2 × 2 matrices with no real eigenvalues, such as the matrix in 12C above, or the matrix that effects 

a 90° rotation of ℝ2 about the origin. However, every 3 × 3 matrix has at least one real eigenvalue. Explain why.† 

  

 
* Such matrices arise naturally in probability calculations, for example as transition matrices (also known as stochastic matrices) 

in Markov chains. The entries in each column of such a matrix represent probabilities that must add up to 1. 

† There are such things as complex eigenvalues, but not in this introductory textbook. 

 Invertible? Diagonalizable? 

 𝐴   

𝐵   

𝐶   

𝐷   
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17. (Algebraic and Geometric Multiplicities of Eigenvalues) 

You might or might not be familiar with “the Fundamental Theorem of Algebra” (FTA), which states that every 

𝑛th-degree polynomial 𝑝(𝑥) can be factored as follows: 

𝑝(𝑥) = 𝑐(𝑥 − 𝑟1)(𝑥 − 𝑟2)⋯ (𝑥 − 𝑟𝑛), 

where 𝑐 is a constant, and where some or all of the constants 𝑟𝑖  may be complex numbers. A few examples: 

 𝑥2 − 6𝑥 + 9 = (𝑥 − 3)(𝑥 − 3) 

      2𝑥2 + 3𝑥 − 2 = 2(𝑥 − 1 2⁄ )(𝑥 + 2) 

                        𝑥3 + 𝑥 = (𝑥 − 0)(𝑥 − 𝑖)(𝑥 + 𝑖) 

𝑥4 − 2𝑥3 − 7𝑥2 + 20𝑥 − 12 = (𝑥 − 2)2(𝑥 − 1)(𝑥 + 3). 

The FTA can’t tell you how to find a factorization – only that a factorization exists (in the mind of God, as it were). 

The FTA is a vital theorem for theoretical work; we’ll use it below - and again in exercise 18. The constants 𝑟𝑖  that 

appear in the 𝑛th-degree polynomial’s factorization are its 𝑛 roots. If the same root appears 𝑘 times in this 

factorization, we say that root has multiplicity 𝑘. (When 𝑘 > 1, we call the root a repeated root.) 

a) State the roots – and the multiplicity of each repeated root – of each of the four polynomials above. 

Now for some definitions:  

The algebraic multiplicity of an eigenvalue of 𝐴 is its multiplicity as a root of 𝐴’s characteristic polynomial. 

The geometric multiplicity of an eigenvalue of 𝐴 is the dimension of its associated eigenspace. 

b) Exercise 12F concerned a matrix whose characteristic polynomial was (−1)(𝜆 − 2)2(𝜆 − 1). Its eigenvalues 

were thus 2 and 1, and you found that the respective eigenspaces were both lines in ℝ3. 

That being so, state the algebraic and geometric multiplicities of each eigenvalue of that matrix.   

One can show that each eigenvalue’s geometric multiplicity is less than or equal to its algebraic multiplicity. 

The proof is somewhat involved, and would involve a serious detour, so we’ll take it for granted in this exercise. 

With that in mind, explain why each of the following statements about an 𝑛 × 𝑛 matrix 𝐴’s real eigenvalues hold.  

c) The sum of the algebraic multiplicities is at most 𝑛. 

d) The sum of the geometric multiplicities is at most 𝑛. 

e) The matrix is diagonalizable ⇔ the geometric multiplicities add up to 𝑛. 

f) If the algebraic multiplicities add up to 𝑛, then the matrix might - or might not - be diagonalizable. 

g) The matrix is diagonalizable ⇔ (1) the algebraic multiplicities add up to 𝑛 and (2) each eigenvalue’s geometric 

multiplicity equals its algebraic multiplicity. 

h) If the matrix has even one eigenvalue whose geometric multiplicity is strictly less than its algebraic multiplicity, 

then the matrix is defective (i.e. it can’t be diagonalized).  

i) If an eigenvalue’s algebraic multiplicity is 1, the eigenvalue’s corresponding eigenspace is a line.  

18. (The Trace of a Matrix) 

If 𝐴 is a square matrix, then its trace (which we denote tr(𝐴)) is the sum of the entries on 𝐴’s main diagonal. 

Surprisingly, the trace turns up in some interesting places, a few of which you’ll meet in this problem. 

a) Prove the following: If 𝐴 is a 2 × 2 matrix, then 𝐴’s characteristic polynomial is 

𝜆2 − (tr(𝐴))𝜆 + det(𝐴). 

b) Use the preceding result to find the characteristic polynomials of the 2 × 2 matrices in Exercise 12 more 

quickly than you found them originally. 
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c) Prove the following: If 𝐴 is a 2 × 2 matrix with eigenvalues 𝜆1 and 𝜆2 (which may be equal or complex!), then 

tr(𝐴) = 𝜆1 + 𝜆2     and     det(𝐴) = 𝜆1𝜆2. 

That is, the eigenvalues’ sum is the trace; the eigenvalues’ product is the determinant. 

[Hint: Combine the result of Part A with the Fundamental Theorem of Algebra from Exercise 17.] 

d) Use Part C to find the following matrices’ eigenvalues without finding their characteristic polynomials: 

𝐴 = (
3 4
2 5

) ,               𝐵 = (
1 2
2 4

). 

e) In fact, the results from Part C extend to square matrices of all sizes, not just 2 × 2 ones. That is, the sum and 

product of every square matrix’s eigenvalues turn out to be its trace and determinant respectively.* This result, 

perhaps combined with others, can be used to impress your friends at parties by finding a matrix’s eigenvalues 

without having to think about its characteristic polynomial. For example, what are the eigenvalues of 

𝑀 = (
2 4 3
1 2 6
3 6 0

) ? 

Well, all the rows add up to the same constant, so that constant, 9, must be an eigenvalue (by Exercise 10). 

Next, observe that the columns are linearly dependent, since column two is double column one. Hence, by 

the Invertible Matrix Theorem (see Exercise 6), this matrix is not invertible, and accordingly, it must have 0 as 

one of its eigenvalues. What’s the third eigenvalue? Well, tr(𝐴) = 4, so the three eigenvalues must sum to 4, 

which means that the third eigenvalue must be -5. Hence, 𝑀’s eigenvalues are 9, 0, and -5. 

Use such “party tricks” to find the eigenvalues of these matrices without computing their characteristic 

polynomials, carefully justifying each of your steps: 

𝐴 = (
1 3 4
2 2 4
3 1 4

) ,              𝐵 = (
2 0 0
0 2 0
5 1 3

) ,              𝐶 = (
1 2 3
1 2 3
4 2 0

). 

  

 
* But note that in this eigenvalue sum, one must include each eigenvalue a number of times equal to its own algebraic multiplicity. 

Thus, if 𝐴’s characteristic polynomial is (𝜆 − 5)2(𝜆 + 2)(𝜆 − 1)3, then its trace would be 5 + 5 + (−2) + 1 + 1 + 1 = 11, and 
its determinant would be (5)2(−2)(1)3 = −50. 
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Eigenstuff and Long Run Behavior 
In the long run we are all dead. 

 - John Maynard Keynes, A Tract on Monetary Reform  

 

One way to grasp a mathematical system’s long run behavior is to express the system in linear algebraic 

terms, and then analyze its eigenstuff, which often turns out to be related to limits, your old friends from 

calculus. To explain the idea, I’ll dwell for a bit on the famous Fibonacci sequence:  0, 1, 1, 2, 3, 5, 8, 13…, 

a numerical system that unfolds from a simple seed (the two initial terms, 0 and 1) plus a simple rule: 

Each successive term is the sum of the previous two terms.  

 

Given two consecutive terms in the Fibonacci sequence, we produce the next term by adding them. 

But given just one number from the sequence (say, 832040), is there some mathematical way to find, or 

even approximate, its successor without having to reconstruct the entire sequence up to that point? 

 There is. The trick involves grasping the sequence in algebraic, and ultimately linear algebraic terms. 

If we let 𝐹𝑛 be the Fibonacci sequence’s 𝑛th term, we can specify the full sequence recursively as follows: 

𝐹0 = 0,    𝐹1 = 1;         𝐹𝑛 = 𝐹𝑛−2 + 𝐹𝑛−1 for all  𝑛 ≥ 2. 

Next, to inject some geometry, we will form vectors in ℝ2 whose top component is a Fibonacci number 

(i.e. any number from the sequence), and whose bottom component is the previous Fibonacci number: 

(
𝐹𝑛
𝐹𝑛−1

). 

At right, I’ve plotted points corresponding to the first six of these 

“Fibonacci vectors”. For example, the point at (5, 3) tells us that 5 

is a Fibonacci number… whose predecessor in the sequence is 3. 

The second component of a Fibonacci vector might initially seem 

pointless, but tucking it into a vector along with the first is clever, 

opening the door not only to geometry, but to a matrix as well. 

The key observation that leads us to it is that a certain linear map 

will take us from any one Fibonacci vector/point,  

(
𝐹𝑛−1
𝐹𝑛−2

),  to the next one,  (
𝐹𝑛
𝐹𝑛−1

),  

since the latter’s components are linear combinations of the former’s components: 

𝐹𝑛     = 1𝐹𝑛−1 + 1𝐹𝑛−2 

𝐹𝑛−1 = 1𝐹𝑛−1 + 0𝐹𝑛−2. 

We can bundle these linear relationships into a single matrix-vector equation: 

(
𝐹𝑛
𝐹𝑛−1

) = (
1 1
1 0

) (
𝐹𝑛−1
𝐹𝑛−2

). 

Thus, we’ve found a 2 × 2 matrix that sends each Fibonacci vector/point to its successor on the graph. 

Accordingly, we can now see the entire graph as generated from the initial point (1, 0) and the matrix: 

We feed (1,0) into the matrix, which maps it to (2, 1). We feed that point back into the matrix, which 

maps it to (3, 2)… and so on forever. The points generated this way are the Fibonacci points. 
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Observe that the graph’s points come close to falling on a line. 

Or rather, the line is the limit towards which successive points tend. 

In the long run, points in the sequence are indistinguishable from 

points that lie on the line. Once we’re far enough into the sequence, 

the matrix is essentially just scaling Fibonacci vectors, stretching 

them along the line without rotating them. In other words, in the 

long run, the Fibonacci vectors are eigenvectors, and the line is an 

eigenspace of the matrix. Its associated eigenvalue is, of course, the 

scaling factor by which the matrix, in the long run, stretches each 

Fibonacci vector. 

Computing the matrix’s eigenvalues is easy. You should do that now, using Exercise 18a’s shortcut. 

You’ll find that it has only one eigenvalue greater than 1. That’s the relevant eigenvalue here, since the 

Fibonacci vectors are stretched away from the origin. This eigenvalue turns out to be the golden ratio,  

𝜙 =
1 + √5

2
≈ 1.618, 

an irrational number famous for turning up in all sorts of mathematical places. You’ll have the chance to 

explore some of 𝜙’s properties in the next exercise set. At any rate, we’ve established that if 𝐟𝑛 is the 𝑛𝑡ℎ 

Fibonacci vector, then 𝐟𝑛+1 ≈ 𝜙𝐟𝑛, with the approximation improving as 𝑛 gets larger. Plucking the first 

components from each side of this approximation yields 

𝐹𝑛+1 ≈ 𝜙𝐹𝑛, 

and so, to return to our original question, if someone hands us a large Fibonacci number such as 832040 

and asks us what the next one in the sequence will be, we need not reconstruct the whole sequence up 

to that point to find it. We can just multiply 832040 by 𝜙. The product, rounded to the nearest integer, 

turns out to be 1346269. This integer should be close to the next term in the Fibonacci sequence. 

Remarkably, it turns out to be the next term exactly!* In fact, when we round 𝜙𝐹𝑛 to the nearest integer, 

we obtain 𝐹𝑛+1 exactly for all 𝑛 ≥ 2. In other words, this “long run” tendency for the Fibonacci sequence 

takes hold almost immediately. This happens because the initial Fibonacci point (1, 0) already lies so close 

to the magic line. This line, the eigenspace 𝐸𝜙, attracts vectors like a magnet as we run Fibonacci vectors 

(and the resulting sequence of successive outputs) through the matrix. 

Interestingly, the line’s magnetic quality persists even if we initially feed the matrix a vector that isn’t 

a Fibonacci vector. For example, the point/vector (7, 1) isn’t a Fibonacci vector, but if we feed it to the 

matrix, then feed its output back in, and so on, the resulting sequence of points tends towards the line, 

even though we’re no longer working with Fibonacci numbers. These points’ first components constitute 

a new sequence of numbers, still governed by Fibonacci’s rule (“add the previous two to get the next”), 

but developing from a different seed: 

   1, 7, 8, 15, 23, 38, 61, 99,… . 

In the long run, this new sequence still grows at each step by a factor of 𝜙. But since our initial point (7, 1) 

now sits considerably further from the “magnetic” line (the eigenspace corresponding to 𝜙), it takes a few 

more steps before the scaling factor of 𝜙 nails down the next term flawlessly. For example, 23 is the new 

 
* Either patiently (by generating the sequence) or impatiently (by looking it up), you can confirm that 832040 and 1346269 are, 

respectively, 𝐹30 and 𝐹31. 
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sequence’s fifth term, and 23𝜙 ≈ 37, which is close… but not quite right. The sixth term is actually 38. 

However, by the next term, all’s well: 38𝜙 ≈ 61, which is indeed the sequence’s seventh term. 

It helps to think of the matrix as generating a force field that pervades the plane, capable of pushing 

points (i.e. vectors) towards the eigenspace. The figure below gives the idea:* 

 

  

 

 

 

 

 

 

 

 

 

Initially, we “dropped” a point into the field at (7, 1), where it was subjected to forces pushing it north 

and very slightly east (the arrows in the picture give only the direction in which the “wind” blows at each 

point; they don’t indicate its strength). This brought the point to (8, 7), where the wind blows easterly, 

with a slight push to the north. These forces then pushed the point to (15, 8), quite close to the line. Here, 

the wind blows nearly parallel to the line, but it still pushes points a bit closer to it. The overall effect, as 

the figure makes clear, is that no matter where we initially drop our point, the “winds” will ultimately 

push the point towards the line. 

“But,” you might reasonably ask, “What about the matrix’s other eigenvalue, 

1 − √5

2
≈ 0.618, 

and its eigenspace? Don’t they have any effect on the geometric picture above?” They do indeed, but they 

will be visible only if we widen our field of view to encompass the entire plane – not just its first quadrant. 

When we do so, our picture will contain a pair of one-dimensional eigenspaces, like so:  

 
* A computer generates the figure by taking many points (𝑥, 𝑦) in the plane, and at each such point, computing the quantity 

(
1 1
1 0

) (
𝑥
𝑦) − (

𝑥
𝑦), 

which is the vector pointing from (𝑥, 𝑦) to the point where the matrix sends (𝑥, 𝑦). The computer then scales this direction 
vector down dramatically (to avoid traffic jams in the picture) and places it at (𝑥, 𝑦).    
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The dotted eigenspace’s eigenvalue is approximately 0.618. Since this is less than 1, points on it are drawn 

towards the origin, as the “force field” indicates. Even in this expanded view, it’s easy to see that a point 

dropped anywhere in the plane will eventually find itself moving towards the first eigenspace, 𝐸𝜙. For 

example, if we drop a point at  (−4, 2), it first gets mapped southeast to 𝐵 (−2,−4), then pushed 

northwest to 𝐶 (−6,−2), and then to 𝐷 (−8,−6). From there, the point is clearly locked forevermore 

into the stream that flows along 𝐸𝜙, albeit in its “negative direction”, flowing into the 3rd quadrant. 

 

The ideas above have applications far beyond the Fibonacci sequence. We are now trespassing in the 

vast domain of dynamical systems, which you can explore in an introductory differential equations course 

– should you be lucky enough to take one employing a dynamical systems point of view. Still, even without 

the machinery of differential equations, you can sample the topic’s flavor by considering the following 

example of a discrete dynamical system. 

Living in the remote depths of a certain forest are some wild dachshunds and their preferred prey, 

feral mailmen. If 𝐷𝑛 and 𝑀𝑛 represent the population of each species in this region at the beginning of 

year 𝑛, then a simple predator-prey model of how these populations change in time might look like this: 

𝐷𝑛+1 =   .86𝐷𝑛 +   .08𝑀𝑛 

𝑀𝑛+1 = −.12𝐷𝑛 + 1.14𝑀𝑛. 

To see why this might make sense, consider each equation in turn. The first indicates that the number of 

dachshunds next year depend on how many dachshunds and mailmen there are this year. If for, example, 

there are no mailmen in the region this year, then the dachshund population will, according to this model, 

be reduced by 14% as they are forced to endure a year without their favorite food. On the other hand, for 

every 100 mailmen in the area this year, there will be 8 new dachshunds next year – a perfectly reasonable 

assumption, since mailman meat nourishes the local dachshunds and attracts more dachshunds from afar. 
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As for the model’s second equation, it tells us that in the absence of dachshunds, the unchecked mailman 

population would grow by 14% each year.* However, for every hundred dachshunds, twelve mailmen will 

succumb to their ruthless predation. Incidentally, some have speculated that dachshund-on-mailman 

violence was precisely what inspired Alfred Lord Tennyson’s phrase “Nature, red in tooth and claw”.  

Naturally, the model above can be translated into a matrix-vector equation: 

(
𝐷𝑛+1
𝑀𝑛+1

) = (
. 86 0.08
−.12 1.14

 ) (
𝐷𝑛
𝑀𝑛
), 

and an “eigenanalysis” like the one we employed in our Fibonacci problem will reveal much about this 

system’s long run behavior. Carrying this out, we find that the matrix has two eigenvalues: 1.1 and 0.9. 

Their corresponding eigenspaces are shown in the figure below.  

The figure reveals how the fate of this 

predator-prey system will depend on its initial 

conditions. For example, if we start with 800 

dachshunds and 200 mailmen (i.e. if we drop a 

point into the “force field” at (800, 200)), the 

arrows point out a dire fate for the mailmen: 

They’ll be hunted to extinction, driven down to 

the 𝐷-axis of doom. However, had those 800 

dachshunds been paired initially with 600 

mailmen, our moving point would be drawn to 

a happier fate: eigenspace 𝐸1.1, where a stable 

ratio of 3 mailmen for every 1 dachshund 

eventually holds sway, with both populations 

then growing by 10% in each subsequent year. 

Of course, that growth rate can’t be sustained 

forever in practice, which is one weakness of 

this crude predator-prey model.† More refined 

models exist, but this example was only meant 

to convey the basic idea. 

At any rate, you’ll have the chance to dig more deeply into these ideas in future classes. My intention 

here was just to gesture in their general direction, pointing towards the mathematical horizon – towards 

an educational eigenspace that you may find yourself drawn to bit by bit should your own initial conditions 

happen to predispose you to becoming sucked into the world of dynamical systems. 

 

 

 

 
* Astute readers may now be wondering if these feral mailmen have evolved to reproduce asexually. Not so. Although I’ve used 

the gendered term “mailmen”, it should be understood as including mailwomen, known sometimes as femailmen.  

† A better model would account for the area’s “carrying capacity” – a measure of how many dachshunds and mailmen the area 
can support before overcrowding leads to population decline.   
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Exercises. 

19. Historically, the golden ratio arose from the following problem: Given any line segment, cut it into two pieces so 

that that the whole segment is to the longer piece as the longer piece is to the shorter piece. If we can do this, 

we define the numerical value of this ratio (whole/long, or equivalently, long/short) to be the golden ratio, 𝜙. 

Your problem: From the golden ratio’s definition, deduce its exact numerical value. 

[Hint: Define the short piece of our divided line segment to be 1 unit. Call the long piece 𝑥, and use 𝜙’s definition 

to deduce 𝑥’s length. Then by 𝜙’s definition (again), it follows that 𝜙 = 𝑥 1⁄ = 𝑥, giving us 𝜙’s numerical value.] 

20. The polynomial 𝑥2 − 𝑥 − 1 is intimately linked to the golden ratio: Its positive root is 𝜙, while its negative root, 

which I’ll call 𝜓, is 𝜙’s “conjugate”. That is, the polynomial’s two roots are: 

𝜙 =
1 + √5

2
,               𝜓 =

1 −  √5

2
. 

Demonstrate each of the following facts, some of which may prove useful to you in the next exercise: 

a) 𝜙2 = 1 + 𝜙               b) 𝜙−1 = −𝜓               c) 𝜓 = 1 − 𝜙               d) 𝜙 ≈ 1.618               e) 𝜓 ≈ −0.618 

21. (The 𝒏𝒕𝒉 Fibonacci number) Eigenstuff can lead us to an exact formula for 𝐹𝑛, the 𝑛𝑡ℎ Fibonacci number. In this 

exercise, I’ll walk you through the argument, letting you fill in the details. 

a) Let 𝐴 = (
1 1
1 0

), the matrix we encountered in this section’s Fibonacci example. Explain why 

(
𝐹𝑛+1
𝐹𝑛
) = 𝐴𝑛 (

1
0
). 

b) Explain why it follows that 

𝐹𝑛 = (0 1)𝐴𝑛 (
1
0
). 

c) Although the preceding equation gives us a recipe for 𝐹𝑛, it’s not very satisfying, as it involves raising matrix 𝐴 

to a power, which is computationally expensive. But as you saw in Exercise 8D, we know a trick for raising a 

matrix to a power: eigendecomposition. Recall the eigendecomposition punchline (spelled out in Exercise 9B): 

If 𝐴 admits an eigenbasis (as it does here), we can write 𝐴 = 𝑉Λ𝑉−1, where Λ is a diagonal matrix whose 

diagonal entries are 𝐴’s eigenvalues, while matrix 𝑉 stores - in its corresponding columns - an eigenvector for 

each eigenvalue. Accordingly, eigendecomposition will turn Part B’s formula into something of the form 

𝐹𝑛 = (0 1)𝑉Λ𝑛𝑉−1 (
1
0
). 

This still contains a matrix raised to a power, but now it is a diagonal matrix, which is good, because raising a 

diagonal matrix to the 𝑛𝑡ℎ power is easy: we just raise each of its diagonal entries to the 𝑛𝑡ℎ power. 

Your problems: Show that 𝐴’s characteristic polynomial is 𝜆2 − 𝜆 − 1, and thus (by Exercise 20), 𝐴’s 

eigenvalues are 𝜙 and 𝜓. Find a corresponding eigenvector for each eigenvalue. Having done this, conclude 

that the following expansion of our previous equation is valid:  

𝐹𝑛 = (0 1) (
𝜙 𝜓
1 1

) (
𝜙 0
0 𝜓

)
𝑛

(
𝜙 𝜓
1 1

)
−1

(
1
0
). 

d) Simplify the preceding until you obtain the following remarkable formula: 

𝐹𝑛 =
𝜙𝑛 − 𝜓𝑛

√5
. * 

e) Use the preceding formula to compute 𝐹40 directly with a scientific calculator.

 
* Remarkably, a formula involving two irrational numbers always yields Fibonacci numbers, which are integers. 
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