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Preface for Teachers 

“Anyone who adds to the plethora of introductory calculus textbooks owes 

an explanation, if not an apology, to the mathematical community.” 

  -Morris Kline, Calculus: An Intuitive and Physical Approach 

Full Frontal Calculus covers the standard topics in single-variable calculus, but in a somewhat unusual way. 

Most notably, in developing calculus, I favor infinitesimals over limits. Other novel features of the book 

are its brevity, low cost, and – I hope – its style. 

Why infinitesimals rather than limits? A fair question, but then, why limits and not infinitesimals? 

The subject’s proper historical name is the calculus of infinitesimals. Its basic notation refers directly to 

infinitesimals. Its creators made their discoveries by pursuing intuitions about infinitesimals. Most 

scientists and mathematicians who comfortably use calculus think about it in terms of infinitesimals. Yet 

in our classrooms, we hide the essence of calculus behind a limiting fig leaf, as if fearful that the sight of 

bare infinitesimals could make fragile young ladies faint at their desks. Please. Spare us your smelling salts. 

The tightly corseted pre-Robinsonian era ended half a century ago. 

Infinitesimals can now be made every bit as rigorous as limits, though full rigor is beside the point in 

freshman calculus, the goals of which are deep intuition and computational facility, each of which we 

enhance by admitting infinitesimals into our textbooks. By using infinitesimals, we help our students relive 

the insights of the giants who forged the calculus, rather than those of the janitors who tidied up the 

giants’ workshop. 

The book is short because it need not be long. If fools like you and me (and Silvanus Thompson) can 

master the calculus, it cannot be so complex as to require a 1000-page instruction manual. 

I have chosen self-publication primarily because my experiences with a conventional publisher for my 

first book, Lobachevski Illuminated, were not altogether happy. Despite winning the Mathematical 

Association of America’s Beckenbach Prize in 2015, that book passed most of its first decade in awkward 

electronic limbo – until 2021, when the American Mathematical Society gave it its first proper print run. 

By retaining control over the present book’s publication, I can ensure that it remains available and 

inexpensive to my students (and yours).  

For the past several years, while using drafts of Full Frontal Calculus in my classes at South Puget 

Sound Community College, I’ve offered students extra credit points for catching typos. Their quarry, once 

plentiful, has now been satisfactorily reduced. Any remaining typos or errors are, of course, due solely to 

my students’ appalling negligence. Please let me know of any surviving mistakes that you might notice. 

(You can find my contact information at my website, BraverNewMath.com.) And if, after reading the book, 

you find yourself clamoring for full frontal multivariable calculus, let me know that, too. Given sufficient 

demand, who knows, I might even write it. 
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Preface for Students 

“Allez en avant, et la foi vous viendra.”  

 -Jean Le Rond D’Alembert 

Fair warning: This book’s approach to calculus is slightly unorthodox, particularly in its first two chapters. 

Consequently, you are unlikely to find other books or videos that will show you how to solve many of its 

homework problems.* This, despite what you might initially think, is a good thing; it will force you, from 

the beginning, to become an active reader – and thus to become more in tellectually self-reliant.  

Full Frontal Calculus is meant to be read slowly and carefully. Ideally, you should read the relevant 

sections in the text before your teacher lectures on them. The lectures will then reinforce what you’ve 

understood, and clarify what you haven’t. Read with pencil and paper at the ready.† When I omit algebraic 

details, you should supply them. When I use a phrase such as “as you should verify”, I am not being 

facetious. Only after reading a section should you attempt to solve the problems with which it concludes. 

When you encounter something in the text that you do not understand (even something as small as an 

individual algebraic step), you should mark the relevant passage and try to clear it up, which may involve 

discussing it with your classmates or teacher or reviewing prerequisite material. Regarding this last point, 

calculus students commonly find that their grasp of precalculus mathematics is weaker than they had 

supposed. Whenever this happens (“I’ve forgotten how to complete the square!”), do not despair, but do 

review the relevant topics.‡ Be assiduous about repairing foundational cracks whenever you discover 

them, for the machinery of calculus is heavy; attempts to erect it on porous precalculus foundations end 

poorly. 

As with learning a language or a musical instrument, learning calculus requires tenacity of purpose: 

To succeed, you must devote several hours a day to it, day after day, week after week, for many months. 

Fortunately, the intrinsic rewards in learning calculus – as with a language or the violin – are substantial. 

And, of course, knowing calculus extends your ability to study science, and thus eventually to enter 

professional scientific fields. 

At the beginning, this can all seem quite intimidating. Bear in mind that tens of thousands of people 

succeed in learning basic calculus every year. You can be one of them. But it will require hard work, and 

at times, you may wonder whether it is worthwhile. It is. Go on, and faith will come to you. 

Let us begin. 

 
* Once we’ve reached cruising altitude (Chapter 3), I, your faithful pilot, will switch off the fasten-seatbelts light, and you’ll be 

able to consult standard calculus texts and websites once again if and when you so desire.  

† I highly recommend purchasing a print copy so that you can scrawl notes in the margins. Online reading, in my experience at 
least, is rarely active reading. 

‡ See this book’s prequel, Precalculus Made Difficult, available on my website, BraverNewMath.com. 
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Calculus: From A to The 

A calculus is a set of symbolic rules for manipulating objects of some specified type. If you’ve studied 

statistics, you’ve probably used the calculus of probabilities.* If you’ve studied formal logic, it follows that 

you’ve met the propositional calculus.† After you’ve mentally summed up all the little bits of knowledge 

in this book, you’ll have learned the calculus of infinitesimals. 

An infinitesimal is an infinitely small number – smaller than any positive real number, yet greater than 

zero. Like square roots of negatives (the regrettably-named “imaginary numbers”), infinitesimals seem 

paradoxical: They manifestly do not belong to the familiar system of real numbers. Mathematicians and 

scientists have, nonetheless, used them for centuries, because infinitesimals help us understand functions 

of real numbers – those faithful tools with which we model, among other things, the so-called real world 

of experience. To gain perspective on our real homeworld, it helps to survey it from without. Such a 

justification for working with numbers beyond the reals should satisfy the hard-nosed pragmatist; for 

another, equally valid, justification, we need only observe our fellow mammals the dolphins and whales 

at play. There is pleasure to be had in breaching the surface of a world that normally confines us.  

In biology, the naked eye is perfectly serviceable for some purposes, but a microscope’s lenses reveal 

details of a microworld that can ultimately help explain what we experience on our familiar scale. 

Similarly, mathematicians have found that although the real numbers suffice for our basic measurement 

needs, “infinitesimal-sensitive lenses” can sharpen the pixelated image that the reals present to our naked 

mind’s eye. Our mathematical microscope is, of course, purely mental. Cultivating a sense of what it 

reveals requires practice and imagination, but the essence of the idea, however, is simple: Magnitudes 

that appear equal to the naked eye (i.e. in terms of real numbers) may turn out, when viewed through 

our infinitesimal-sensitive microscope, to differ by an infinitesimal amount. Conversely, magnitudes that 

differ by a mere infinitesimal when viewed under the microscope correspond, when viewed with the 

naked eye, to one and the same real number.  

“Interesting,” you may reflect, “but I wish we’d just stick with the good old familiar real numbers.” Be 

careful what you wish for, lest you unnecessarily limit your mathematical imagination! Yes, the reals are 

familiar and indispensable, but they can also be disturbingly strange; by embracing infinitesimals, we can 

actually divest the reals of some of their strangeness, as you’ll see in the first example below. In the second 

example, you’ll see how infinitesimals can help us bridge the qualitative divide between curves and 

straight lines. Bridging this divide turns out to be a major theme of calculus. 

 

Example 1. Suppose an urn contains eight balls, one of which is red. If we draw a ball at random (so 

each ball is equally likely to be drawn), the probability of drawing the red one is clearly 1/8. But 

suppose there are not eight, but infinitely many balls from which to draw. Under these 

circumstances, what is the probability of drawing the one red ball? 

The answer seems to be “one in infinity”, but what does that even mean? Well, there are two 

things we can definitely say about a “one in infinity” probability. The first is that it is surely less than 

“one in 𝑁” for any whole number 𝑁 whatsoever. The second is that, like all probabilities, it is a 

 
* The calculus of probabilities contains rules such as 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵).  

† Such a calculus would contain rules such as 𝑃 ∧ 𝑄 ⟹ 𝑃. 
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number between 0 and 1, the values that correspond to impossibility and certainty respectively. 

Combining these two facts yields the following conclusion: The probability of drawing the red ball 

is some number that lies between 0 and 1 and is less than 1/𝑁 for all whole numbers 𝑁. 

A little thought should convince you that only one real number satisfies both demands: zero. 

Hence, if we confine ourselves to the real numbers, we are forced to conclude that the probability 

of drawing the red ball is zero – which suggests that drawing it is not merely unlikely, but actually 

impossible. Moreover, the same logic applies to each one of the infinitely many balls, which leads 

us to the awkward conclusion that from our infinite collection, it is impossible to draw any ball 

whatsoever! Such is the paradoxical scene as viewed with the naked eye. 

The paradox vanishes if we accept infinitesimals. For if we do, we need not conclude that the 

probability of drawing the red ball is zero; it could be infinitesimal while still meeting the two 

demands for a “1 in ∞” probability described above. The probability of drawing the red ball would 

then be unfathomably minuscule – less than 1/𝑁 for every whole number 𝑁, impossible to 

represent as a decimal, indistinguishable from zero in the real world – and yet, not quite zero. 

Consequently, the red ball can be drawn, though I wouldn’t advise betting on it.   

So much for balls. Let’s drop down a dimension and discuss circles. Everyone and his mother “knows” that 

a circle of radius 𝑟 has area 𝜋𝑟2. But why is this so? Infinitesimals can help you understand. 

Example 2. The area of a circle with radius 𝑟 is 𝜋𝑟2. 

Proof. Inscribe a regular 𝑛-sided polygon in the circle. Clearly, the greater 

𝑛 is, the closer the polygon cleaves to the circle. Even when 𝑛 is relatively 

small (say, 𝑛 = 50), distinguishing the two shapes is difficult for the naked 

eye, yet they remain distinct for any finite 𝑛. Our proof of the area formula, 

however, hinges on a radical reconceptualization: We shall think of the 

circle as a regular polygon with infinitely many sides, each of which is 

infinitesimally small. This idea will enable us to use facts about polygons 

(straight, simple objects) to learn about circles (curved objects).  

Since a regular 𝑛-gon’s area is 𝑛 times that of the triangle in the figure above, its area must be 

𝑛(𝑏ℎ/2). Since 𝑛𝑏 = 𝑃 (the polygon’s perimeter), this expression for area simplifies to 𝑃ℎ/2. 

Thus the circle, being a polygon, has area 𝑃ℎ/2. But for our circle/∞-gon, 𝑃 represents the 

circle’s circumference (which is 2𝜋𝑟), and ℎ represents the circle’s radius (which is 𝑟). Substituting 

these values into the area formula 𝑃ℎ/2, we conclude that the circle’s area is (2𝜋𝑟)𝑟 2⁄ , which 

simplifies to 𝜋𝑟2, as claimed.  ■  

 

Please dwell on this surprising, beautiful, disconcerting argument. When mathematicians began to use 

infinitesimals, even philosophers and theologians took note. Is a proof that uses infinitesimals a genuine 

proof? Is a circle really a polygon of infinitely many sides? Is it wise for finite man to reason about the 

infinite? Even as such philosophical debates raged (from the 17th century on), mathematicians paid only 

halfhearted attention, busy as they were developing a potent calculus of infinitesimals. That this calculus 

worked no one questioned; that it lacked a fully comprehensible foundation no one denied. Its triumphs 

were astonishing. The infinitesimal calculus helped physics break free of its static Greek origins and 



Full Frontal Calculus   Chapter 1: The Basic Ideas 

5 
 

become a dynamic modern science. And yet... all attempts to establish iron-clad logical foundations for 

the calculus failed. Since at least the time of Euclid (c. 300 BC), mathematics had been viewed as the 

archetype of logical reasoning. Small wonder then that, despite the undeniable utility of the infinitesimal 

calculus, its murky basis received stinging criticism. Most famously, philosopher George Berkeley 

suggested in 1734 that anyone who could accept the mysterious logical foundations of the infinitesimal 

calculus “need not, methinks, be squeamish about any point in Divinity.” To compare mathematics – the 

traditional rock of logical certainty – to theology, nay, to assert that mathematicians, far from proceeding 

by perfectly rigorous thought, “submit to authority, take things on trust, and believe points inconceivable” 

(as Berkeley would have it) was to shake one of the very pillars of Western civilization.*  

Not until the late 19th century did mathematicians discover a perfectly rigorous method (the theory 

of limits, which you’ll learn about in Chapter 𝜋) to set the theorems of the infinitesimal calculus on solid 

foundations. That it took so long to develop these foundations is understandable, given the surprising 

sacrifice involved: To transfer the massive body of theorems onto the long-desired secure logical 

foundations, mathematicians had to sacrifice the infinitesimals themselves!  

Placed firmly atop these new limit-based foundations, the many theorems of calculus that had been 

developed over the previous centuries were finally secure (there was no longer anything to fear from the 

philosophers), but the infinitesimals that had nourished the subject as it developed were ruthlessly 

expunged in the victory celebration. The very notion of an infinitesimal came to be viewed as an 

embarrassment to the brave new limit-based calculus, as though “infinitesimal” were a discredited 

religious idea from a more primitive time whose abandonment was necessary for the further progress of 

humanity. Even the subject’s name was changed. What had once proudly been known as “The Calculus of 

Infinitesimals” thenceforth became known simply as The Calculus, a name whose emptiness spoke – to 

those, at least, with ears to hear – of the ghosts of departed quantities.† 

Infinitesimal ghosts continued to haunt the calculus, for although the theory of limits had brilliantly 

disposed of a logical problem, it had introduced a psychological problem. In the minds of many who used 

calculus as a scientific tool (but who had no particular concern for the subject’s esoteric logical 

foundations), infinitesimals remained far more intuitive than limits. For this reason, much notation that 

originally referred to infinitesimals was, surprisingly, retained even after the great infinitesimal purge. 

Naturally, the notation was reinterpreted in terms of limits, which entailed a sort of mathematical 

schizophrenia. One would use infinitesimal notation and think infinitesimally, but good mathematical 

hygiene demanded that one refrain from actually mentioning infinitesimals in public. To be sure, textbook 

authors would sometimes timidly advise their readers that it might be helpful to think of such and such 

an expression in terms of infinitesimals, but such advice was invariably followed (as if an authority figure 

had just returned to the room) by a stern warning that actually, infinitesimals don’t exist, and one 

shouldn’t speak about such things in polite society. 

 

 
* Berkeley was a masterful shaker of pillars. His denial that matter exists outside of minds paved the way for David Hume’s 

philosophical demolition of causality and personal identity, and hence to Immanuel Kant’s subsequent reconstruction of these 
ideas on a radically new philosophical basis (transcendental idealism) that he developed to refute Hume, and which then 
became a cornerstone of modern philosophy. 

† Since “The Calculus” is only slightly more expressive than “The Thing”, there was no real loss when, in time, even the definite 
article was shed. Hence today’s unadorned Calculus (on tap at a college near you).  



Full Frontal Calculus   Chapter 1: The Basic Ideas 

6 
 

Resurrection 
“I think in coming centuries it will be considered a great 

oddity in the history of mathematics that the first exact 

theory of infinitesimals was developed 300 years after the 

invention of the differential calculus.” 

 - Abraham Robinson 

 

In his landmark book Nonstandard Analysis (1966), from which the preceding epigraph was taken, 

Abraham Robinson astonished the mathematical world by using tools from 20th-century logic to construct 

the Holy Grail of Calculus: a perfectly rigorous way to make infinitesimals logically respectable. 

Robinson used his newly vindicated infinitesimals (which joined the familiar real numbers to produce 

an extended system of hyperreals) to construct an alternate foundation for calculus. His infinitesimal-

based, 20th-century foundation was every bit as solid as the limit-based, 19th-century foundation, but the 

mathematical world, in the intervening years, had grown secular; its desire for the Infinitesimal Grail had 

been nearly extinguished. Though duly impressed by Robinson’s intellectual achievement, 

mathematicians were largely unmoved by it, for the theory of limits (itself a century old by that time) was 

not only fully rigorous, but also fully entrenched. The logical foundations of calculus had long since ceased 

to be an active field of inquiry, and few mathematicians (who were busy, naturally, exploring other 

problems) cared to revisit it. Their position was quite understandable: The theory of limits, which they, 

their teachers, and their teachers’ teachers had all mastered long ago as mere undergraduates, worked. 

From a strictly logical standpoint, it did not need to be replaced, and mathematicians are no less inclined 

than others to hearken unto the old saw: If it ain’t broke, don’t fix it. Thus they tended – and tend – to 

view Robinson’s work as a remarkable curiosity. All mathematicians know of Robinson’s achievement. 

Few have studied it in detail. 

O intended reader of this book, you are not a professional mathematician. You are a student in a 

freshman-level class. You need not, at this point in your academic career, concern yourself with the full 

details of calculus’s logical foundations, except to be reassured that these exist and are secure; you can 

study them (in either the limit-based version or the infinitesimal-based version) in the appropriate books 

or classes should you feel so inclined in the future. One does not take a course in Driver’s Education to 

learn the principles of the internal combustion engine, and one does not take freshman calculus to learn 

the subject’s deep logical underpinnings. One takes a course such as this to learn the calculus itself – to 

learn what it is, how to use it, and how to think in terms of it, for calculus is as much a way of thinking as 

it is a collection of computational tricks. For you (and for your teacher), the importance of Robinson’s 

work lies not in its formidable logical details, but rather in the retrospective blessing it bestows upon the 

centuries-old tradition of infinitesimal thinking, a tradition that will help you understand how to think 

about calculus – how to recognize when calculus is an appropriate tool for a problem, how to formulate 

such problems in the language of calculus, how to understand why calculus’s computational tricks work 

as they do. All of this becomes considerably easier when we allow ourselves the luxury of working with 

infinitesimals. We need no longer, as in the 1950’s, blush to say “the i-word”. And so, in accordance with 

this book’s title, infinitesimals shall parade proudly through its pages, naked and unashamed.  
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The World of Calculus: An Overview 
“I’m very good at integral and differential calculus,  

I know the scientific names of beings animalculous. 

In short in matters vegetable, animal, and mineral, 

I am the very model of a modern major general.” 

  - Major General Stanley, in Gilbert and Sullivan’s Pirates of Penzance. 

 

Calculus is traditionally divided into two branches, integral and differential calculus. 

Integral calculus is about mentally decomposing something into infinitely 

many infinitesimal pieces; after analyzing the pieces, we then re-integrate 

them (sum them back up) to reconstitute the whole. The spirit of integral 

calculus hovered over our proof of the circle’s area formula, when we 

reimagined the circle’s area as the sum of the areas of infinitely many 

infinitesimally thin triangles. Integral calculus thus involves a special way of 

thinking, or even a special way of seeing. With “integral calculus eyes”, one 

might view a solid sphere as a stack of infinitely many infinitesimally thin 

discs, as suggested by the figure at right. Alternately, one might imagine it as 

an infinite collection of concentric infinitesimally thin hollow spheres, nested like an onion’s layers. 

Differential calculus is about rates of change. An object’s speed, for example, is a rate of change (the 

rate at which its distance from a fixed point changes in time). A bank’s interest rate is a rate of change 

(the rate at which dollars left in a savings account change in time). Chemical reactions have rates of change 

(the rate at which iron rusts when left in water, for instance). The slope of a line is a rate of change (the 

rate at which the line rises as one runs along it). Where there is life, there is change; where there is change, 

there is calculus. Differential calculus is specifically concerned with rates of change on an infinitesimal 

scale. Thus, it is not concerned with how the temperature is changing over a period of weeks, years, or 

centuries, but rather with how the temperature is changing at a given instant. 

Naturally, the two branches of calculus work together: To understand large-scale global change, we 

mentally disintegrate it into an infinite sequence of local instantaneous changes; we scrutinize these 

infinitesimal changes with differential calculus, and then we re-integrate them with integral calculus, so 

as to see the whole again with new eyes and new insights.  

 

In this book, we’ll begin with differential calculus, and then move on to integral calculus. 

 

 

 

 

 

 

 



Full Frontal Calculus   Chapter 1: The Basic Ideas 

8 
 

Differential Calculus: The Key Geometric Idea  

Differential calculus grows from a single idea: On an infinitesimal scale, curves are straight. 

To see this, imagine zooming in on a point 𝑃 lying on 

a curve. As you do so, the part of the curve you can see 

(an ever-shrinking “neighborhood” of 𝑃) becomes less 

and less curvy. In an infinitesimally small neighborhood of 

𝑃, the curve coincides with (part of) a straight line. 

We call this straight line the curve’s tangent at 𝑷. 

Thus, in the infinitesimal neighborhood of a point, a curve 

and its tangent are indistinguishable. Outside of this 

neighborhood, of course, the 

curve and its tangent usually go 

their separate ways, as happens 

in the figure at left. Nonetheless, 

simply by recognizing that curves 

possess “local linearity”, we can answer seemingly tricky questions in geometry 

and physics. Consider the following examples, in which tangent lines make unexpected appearances. No 

calculations are involved, just thinking in terms of infinitesimals. 

 

Example 1. (An Illuminating Tangent on Optics) 

Light reflects off flat surfaces in a very simple manner: Each 

light ray “bounces off” the surface at the same angle at which 

it struck it. This much has been known since at least Euclid’s 

time (c. 300 BC). What happens, however, if the surface is 

curved? We shall reason our way to the answer. 

First, note that in the case of a flat surface, we only need an infinitesimal bit of surface against 

which to measure the relevant angles. (Erasing most of the 

surface, as in the figure, clearly leaves the angles unchanged.) 

As far as the light ray is concerned, most of the surface is 

redundant. The ray’s angle of reflection is a strictly local affair, 

determined entirely in an infinitesimal neighborhood.  

So what happens when a light ray strikes a curve? Think locally! Let us mentally visit an infinitesimal 

neighborhood of the light ray’s point of impact. There, the 

curve coincides with its (straight) tangent line, and our curvy 

conundrum disappears: At this scale, the curve is straight, so 

the old rule still holds! Newly enlightened, we zoom back out to 

our usual perspective, extend the tangent line as in the figure 

at right, and know that this is the line against which we should 

measure our reflection angles.   
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Example 2. (So Long and Thanks for All the Fish.) 

If the Sun were to vanish, where would the Earth go? Isaac Newton 

taught us that the Earth is kept in its orbit by the Sun’s gravitational force. 

He also taught us (following Galileo) that when no forces act on an object 

moving in a straight line, the object will continue moving along that line. 

But what about an object moving on a curved path that is suddenly freed 

from all forces that had been acting on it? Well, if we think infinitesimally, 

we recognize that during any given instant – any infinitesimal interval of time – an object moving on a 

curved path is actually moving on a straight path. Thus when the Sun vanishes, Earth will continue to 

move along the straight path on which it was traveling in that very instant. That is, the Earth will move 

along the tangent to its elliptical orbit.  

 

Tangents, in short, are important. Let us pause for a few exercises. 

 

Exercises. 

1. Let 𝑃 be a point on a straight line. Describe the tangent to the line at 𝑃. 

2. Let 𝑃 be a point on a circle. Describe the tangent to the circle at 𝑃. [Hint: Consider the diameter with 𝑃 as an 

endpoint. The circle is symmetric about this diameter, so the tangent line at 𝑃 must also be symmetric about it. 

(Any “lopsidedness” of the tangent would indicate an asymmetry in the circle – which, of course, doesn’t exist.)]  

3. a) When two curves (not straight lines) cross, how can we measure the angle at which they cross? Explain why 

your answer is reasonable. 

b) How large is the curved angle between a circle and a tangent to the circle? (cf. Euclid, Elements 3.16.) 

4. If you stand in the open country in eastern Washington, the earth looks like a flat plane (hence “the plains”). Of 

course, it isn’t flat; you are actually standing on a sphere. Explain why the earth looks flat from that perspective, 

and what this has to do with the key idea of differential calculus. 

5. Some graphs lack tangents at certain points. Explain why the graph of 𝑦 = |𝑥| lacks a tangent at its vertex. [Hint: 

Reread the first few paragraphs of this section.] The gleaming calculus machine does what it was designed for 

phenomenally well, but it was not built to handle corners. At corner points (which, fortunately, are rare on the 

graphs of the most commonly encountered functions), differential calculus breaks down. 
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Rates of Change 

Once we recognize the local straightness of curves, it affects even the way we think about functions. On 

an infinitesimal scale, any function’s graph is a straight line, which, in turn, is the graph of a linear function. 

Hence, on an infinitesimal scale, all functions are linear!* 

This is excellent news, for linear functions are baby simple. They are 

simple because the output of any linear function changes at a fixed rate, 

which we call its slope. (“Slope” and “rate of change” are more or less 

synonymous.) If, for example, your car is 60𝑡 + 10 miles from your house 

𝑡 hours after we start a stopwatch, then its distance from your house is 

changing at the fixed rate of 60 miles per hour. English has a word for the 

rate at which distance changes in time, so we might as well use it: Your 

car’s speed is fixed at 60 miles per hour.  

Few phenomena we wish to study are so obliging as to conform to a strict linear relationship. 

No one actually drives in accordance with the linear function in the previous paragraph – at least not for 

any appreciable length of time. Rather, a driver’s speed varies from moment to moment, even if, on 

average, he drives 60 miles per hour. But even though physical phenomena are rarely linear in a global 

sense, the functions with which we model them are still locally linear. This is precisely why linear functions 

are so important: Linear functions underlie all functions. 

Accordingly, it makes sense to speak of a nonlinear function’s local rate of change or slope. This notion 

of a local (also called instantaneous) rate of change is familiar to every driver; when you glance down at 

your speedometer, its reading of “63 mph” indicates that your car is moving down the highway at that 

particular rate at that particular instant. Even a few seconds later, your speed may differ. When a 

policeman aims his speed gun at your car, he is measuring your instantaneous rate of change. 

To sum up: Locally, the curved graph of a nonlinear function coincides with a straight tangent line. 

The tangent’s slope is the function’s local slope, which is the function’s 

rate of change near the point of tangency. With this insight, we may 

visually estimate a nonlinear function’s local rate of change. For example, 

consider the figure at right, which is a more realistic nonlinear graph of a 

car’s distance travelled (in miles) as a function of time (in hours). The 

slopes of the two tangents shown in the figure measure the distance 

function’s local rate of change (i.e. the car’s speed) at two different times. 

The graph thus shows us quite plainly that the car was moving faster after 

one hour than it was after half an hour.  

 

  

 
* Exceptions to this rule occur in infinitesimal neighborhoods of “corner points” of the sort described in exercise 5. For the sake 

of readable (if slightly inexact) exposition, I shall continue to make universal statements about “all functions”, trusting the 
intelligent reader, who has been forewarned, always to bear in mind that calculus breaks down where no tangent line exists. 
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The Derivative of a Function 

We are finally ready to define the central object of differential calculus, the derivative of a function. 

This idea is best understood through a few examples. 

Example 1. If a function 𝑓 is given by the graph at 

right, then according to the derivative’s definition, 

𝑓′(0) measures the graph’s slope (i.e. the slope of its 

tangent) when 𝑥 = 0. Clearly, in an infinitesimal 

neighborhood of (0, −1), this graph resembles a line 

whose slope is approximately 1, so 

𝑓′(0) ≈ 1. 

Similarly, we see that 𝑓′(5) ≈ 0, and 𝑓′(4) < 0.     

Example 2. Suppose that after driving for 𝑡 hours, Jehu’s car has travelled a total of 𝑓(𝑡) miles. 

By the derivative’s definition, 𝑓′(𝑡) represents the rate at which his distance is changing at time 𝑡. 

That is, 𝑓′(𝑡) represents Jehu’s speed (in miles per hour) at time 𝑡. 

If, for example, 𝑓′(1/2) = 112, then we know that exactly 30 minutes after he began driving, 

Jehu was driving furiously (112 mph). If, three hours later, traffic brought his car to a standstill, 

then we have that 𝑓′(7 2⁄ ) = 0. 

A graph of Jehu’s distance function 𝑓 would have a slope of 112 when 𝑡 = 1/2, and a horizontal 

tangent line when 𝑡 = 7/2.    

 

Most people use “speed” and “velocity” synonymously, but these have distinct meanings in physics, 

where “speed” is just a magnitude (a positive number), while “velocity” is a magnitude with a direction. 

When we analyze motion in one dimension, we use positive and negative numbers to specify direction. 

For example, when we consider just the vertical motion of a ball (disregarding its horizontal motion), a 

velocity of – 5 ft/sec signifies that the ball is descending at 5 ft/sec. 

In such contexts, positive and negative numbers also extend the notion of distance from a point 

(e.g. “3 meters away”) to the richer concept of position relative to a point (e.g. “3 meters to the right”). 

For example, if a ladybug paces back and forth on a line, one point of which we call the origin and one 

direction of which we deem positive, we might have occasion to describe her position as +8 inches at one 

moment, and −8 at another, depending on which side of the origin she happens to be. (In both cases, her 

distance from the origin is 8 inches.) 

With these distinctions in mind, we can say that the rate of change of position with respect to time is 

velocity. Consequently, the derivative of an object’s position function describes the object’s velocity. 

Definition. The derivative of a function is a new function whose output is the original function’s 

local slope (or equivalently, local rate of change) at the given input value. 

If 𝑓 is a function, its derivative is denoted 𝒇′ (which we read “𝑓-prime”). 

(There are other notations for a function’s derivative, which you’ll meet in due time.) 
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Example 3. When Eris tosses a golden apple in the air, its height after 𝑡 seconds is ℎ(𝑡) meters. 

Since ℎ is the apple’s position function (in the up/down dimension), its derivative, ℎ′(𝑡), gives the 

apple’s velocity (in m/s) after 𝑡 seconds. 

For example, if we are told that ℎ(1) = 12 and ℎ′(1) = 5, we may interpret this as follows: 

After one second, the apple is 12 meters high and rising at 5 m/s. If we also learn that ℎ(2) = 12 

and ℎ′(2) = −5, we know that two seconds after leaving Eris’s hand, the apple is once again 12 

meters high, but it is now on its way down, for it is descending at 5 m/s. 

When the apple reaches its zenith, its velocity must be zero: At that instant, it is neither 

ascending nor descending, but hanging. 

Thus, if the apple’s maximum height occurs when 𝑡 = 3/2, we’d have ℎ′(3 2⁄ ) = 0.    

Velocity is the rate at which position changes. Acceleration is the rate at which velocity changes. Hence, 

we measure acceleration in units of velocity per unit time, such (𝑚/𝑠)/𝑠 (abbreviated, alas, as 𝑚/𝑠2).* 

Note the chain of three functions linked by derivatives: The derivative of an object’s position function is 

its velocity; the derivative of its velocity function is its acceleration. 

Acceleration is thus the second derivative of position, where “second derivative” simply means “the 

derivative of the derivative”. The second derivative of a function 𝑓(𝑥) is denoted, unsurprisingly, 𝑓′′(𝑥). 

Example 4. If we neglect air resistance, any body in free fall (i.e. with no force but gravity acting on 

it) near Earth’s surface accelerates downwards at a constant rate of 32 ft/s2. Consequently, if 𝑓(𝑡) 

describes the height (in feet) of such an object, and 𝑡 is measured in seconds, we immediately know 

that the second derivative of 𝑓 is a constant function: 𝑓′′(𝑡) = −32.  

Position and velocity are rare – but vitally important – examples of functions whose derivatives have 

special names. Even when such names do not exist, you can always interpret any given derivative as the 

rate at which its output changes with respect to its input. 

Example 5. Suppose 𝑉(𝑡) represents the volume (in 𝑚3) of beer in a large vat, where 𝑡 is the 

number of hours past noon on a certain day. Throughout the day, beer leaves the vat (as people 

drink it), but new beer is also poured in by Ninkasi, the Sumerian beer goddess. 

Here, 𝑉′(𝑡) represents the rate at which the volume of beer in the vat is changing at time 𝑡. 

If, say, 𝑉′(5.5) = −0.5, then at 5: 30 pm, the vat’s volume is decreasing at a rate of half a cubic 

meter per minute. (Even Ninkasi struggles to satiate thirsty Sumerians after the 5 o’clock whistle.) 

Horrors! Will the beer run out? Well, suppose we also learn that 𝑉(6) = 0.0001 and 𝑉′(6) = 2. 

These values imply that at 6: 00, the vat is dangerously close to empty, but – at that very instant – 

it is also filling back up at a torrential rate of 2 cubic meters per minute. All praise to Ninkasi! 

Whatever the graph of 𝑉(𝑡) may look like overall, we know it must pass through (6, 0.0001), 

dropping almost down to the 𝑡-axis (which would signify an empty vat), but at that very point, we 

know the graph must also exhibit a strong sign of recovery: an upward-thrusting slope of 2.    

 
* Squared seconds are not physically meaningful units, hence the parenthetical sigh. One must, like Leopold Bloom, remember 

what 𝑚/𝑠2 actually means: “Thirtytwo feet per second, per second. Law of falling bodies: per second, per second. They all fall 
to the ground… Per second, per second. Per second for every second it means.” (James Joyce, Ulysses) 
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Exercises. 

6. Judging by the graph at right…   

a) What is the approximate numerical value of 𝑓′(3)? 

b) Arrange in numerical order: 𝑓′(1),  𝑓′(2),  𝑓′(3),  𝑓′(4),  𝑓′(6). 

c) How many solutions does 𝑓(𝑥) = 0 have in the interval [2,8]?  

d) How many solutions does 𝑓′(𝑥) = 0 have in the interval [2,8]? 

e) Which integers in [2,8] satisfy the inequality 𝑓(𝑥)𝑓′(𝑥) < 0? 

 f) True or false: 𝑓′(𝜋) > 0.      g) True or false: [𝑓(5)]/3 > 𝑓′(7). 

7. True or false:  If 𝑓(𝑥) = 𝑥2,  𝑔(𝑥) = ln 𝑥,  and ℎ(𝑥) = 1/𝑥, then… 

a) 𝑓′(0) = 𝑓(0). b) 𝑔(𝑥) > 0 for all 𝑥 in the domain of 𝑔.   c) 𝑔′(𝑥) > 0 for all 𝑥 in the domain of 𝑔. 

d) 𝑔(1) = 𝑔′(1). e) ℎ′(𝑥) < 0 for all 𝑥 in the domain of ℎ. f) ℎ′(−1) = ℎ′(1). 

g) 𝑓′(𝑥) > 𝑔′(𝑥) for all positive values of 𝑥. 

8. Given the functions in the previous problem, arrange the following in numerical order: 𝑓′(5), 𝑔′(5), ℎ′(5). 

9. Consider the constant function 𝑓(𝑥) = 5. What is 𝑓′(0)? What is 𝑓′(5)? What is 𝑓′(𝑥)? 

What can be said about the derivative of a constant function in general? 

10. Consider the general linear function 𝑔(𝑥) = 𝑎𝑥 + 𝑏. What is 𝑔′(𝑥)? 

11. The function ℎ(𝑥) = |𝑥| is defined for all real values of 𝑥, but ℎ′(𝑥) has a slightly smaller domain. What is it? 

[Hint: See exercise 5.] Also, thinking geometrically, write down a formula for ℎ′(𝑥). 

12. Let 𝑓(𝑥) = √4 − 𝑥2. 

a) Sketch graphs of 𝑓 and 𝑓′ on the same set of axes.  

[Hint: If you don’t know the graph of 𝑓, square both sides of 𝑦 = √4 − 𝑥2; you’ll know that equation’s graph. 

Then observe that for each 𝑥-value on this “squared” graph, there are two 𝑦-values: one positive, one negative. 

Hence, if we solve its equation for its positive 𝑦-values (to recover the strictly positive function 𝑦 = √4 − 𝑥2), 

half of the graph will disappear; what remains is the graph of 𝑓. With that in hand, you can sketch the graph of 

𝑓′ by staring at the graph of 𝑓 and thinking broadly about how its slope changes as 𝑥 varies in its domain.]   

Find the exact values of the following. 

b) 𝑓′(0)          c) 𝑓′(1)          d) 𝑓′(√2)          e) 𝑓′(√3)  

[Hint: Think about exercise 2, and recall how perpendicular lines’ slopes are related.]  

13. Galileo fires a physics textbook out of a cannon. After 𝑡 seconds, its height will be ℎ = −4.9𝑡2 + 𝑣0𝑡, where 𝑣0 

represents the book’s initial upwards velocity in meters per second. Obviously, the book attains each height in 

its range (apart from its maximum height) at two separate moments: once going up, once coming down. 

Remarkably, the book’s speed will be the same at both moments. Without solving equations, explain why. 

[Hint: Think geometrically. What does the height function’s graph look like? How is speed encoded in it?]    

14. Rube Waddell throws a baseball at the full moon. Let 𝑝(𝑡) be the ball’s height (in feet) 𝑡 seconds after it leaves 

his hand. In terms of physics… 

a) What does the quantity 𝑝′(2) represent?     b) What does the solution to the equation 𝑝′(𝑡) = 0 represent? 

c) What is the formula for 𝑝′′(𝑡), and why is this so?    d) If 𝑝′(𝑎) < 0, then what is happening at time 𝑎? 
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15. Buffalo Bill goes ice skating. More particularly, he skates along a narrow frozen river running East/West, often 

reversing his direction by executing beautifully precise 180° turns. If we take a cigar that he dropped on the ice 

to be the origin, and we let East be the positive direction, then his position after 𝑡 minutes can be described by 

the function 𝑓(𝑡), where distances are measured in meters. In physical terms… 

a) What does 𝑓′(𝑡) represent?  b) What does  |𝑓′(𝑡)| represent?      c) What does  |𝑓(𝑡)| represent? 

d) Could there be a time 𝑎 at which 𝑓(𝑎) > 0, but 𝑓′(𝑎) < 0? Explain. 

e) If 𝑓′′(𝑡) = 0 for all 𝑡 in some interval (𝑏, 𝑐), what is happening between 𝑡 = 𝑏 and 𝑡 = 𝑐? 

 f) If 𝑓′(𝑡) = 0 for all 𝑡 in some interval (𝑑, 𝑒), what is happening between 𝑡 = 𝑑 and 𝑡 = 𝑒? 

g) Suppose that 𝑓′(𝑡) < 0 for all 𝑡 in some interval (𝑚, 𝑛), that 𝑓′(𝑛) = 0, and that 𝑓′(𝑡) > 0 for all 𝑡 in some 

interval (𝑛, 𝑝). What happened when 𝑡 = 𝑛? 

16. Physicists call the rate of change of acceleration the jerk. (Thus, the jerk is position’s third derivative.) 

a) If distance is measured in meters, and time in seconds, what are the units of the jerk? 

b) What, if anything, can be said about a freely-falling object’s jerk?  

17. Suppose that the function 𝑇(ℎ) gives the temperature on 11/1/2015 at 10:46 am (the time at which I’m typing 

these words) ℎ meters above my house in Olympia, WA. Suppose further that the function 𝑇′(ℎ) is strictly 

negative (meaning that its value is negative for all heights ℎ). What does this strictly negative derivative signify 

physically? 

18. Buzz Aldrin is walking clockwise around the rim of a perfectly circular crater on the moon, whose radius is 2 

miles.  Let 𝑠(𝑡) be the distance (in miles, as measured along the crater’s rim) he has walked after 𝑡 minutes. 

a) If 𝑠′(𝑡) = 𝜋/40 for all 𝑡 during his first lap, then how long will it take him to complete one lap? 

b) If 𝑠′(𝑡) > 0 and 𝑠′′(𝑡) < 0 throughout his second lap, will Buzz be walking faster when he begins his second 

lap or when he ends it?  

19. A mysterious blob from outer space has volume 𝑉(𝑡) after 𝑡 hours on Earth, where 𝑉 is measured in cubic feet. 

a) What does 𝑉′(5) represent physically, and in what units is it measured? 

b) If the graph of 𝑉(𝑡) shows that 𝑉 is decreasing between 𝑡 = 24 and 𝑡 = 48, what do we know about 𝑉′(𝑡)? 
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A Gift From Leibniz: 𝒅-Notation 

Now that you know what a derivative is, you are ready for the special notation introduced by Gottfried 

Wilhelm Leibniz, one of the intellectual giants in the story of calculus.  

You are no doubt familiar with the “delta notation” commonly used to describe the change in a 

variable.* Recall in particular that we find a line’s slope as follows: From the coordinates of any two of its 

points, we compute the “rise” (∆𝑦) and “run” (∆𝑥); the slope is then “the rise over the run”, ∆𝑦/∆𝑥. 

In calculus, we use Leibniz’s analogous “𝑑-notation” to 

describe infinitesimal change. If 𝑚 represents a magnitude 

(length, temperature, or what have you), then the symbol  

𝒅𝒎 represents an infinitesimal change in 𝒎. 

Since a curve is straight on an infinitesimal scale, the 

slope of its tangent (i.e. its derivative) at any given point is 

given by the ratio of infinitesimals 𝒅𝒚/𝒅𝒙, as in the figure. 

Accordingly, if 𝑦 = 𝑓(𝑥), we frequently use “𝑑𝑦/𝑑𝑥” as an 

alternate notation for the derivative; that is, in place of 

𝑓′(𝑥), we often write 𝑑𝑦/𝑑𝑥. 

The two derivative notations peacefully coexist. We use whichever one is more convenient in a given 

situation. 

Prime notation’s prime advantage is that it provides a clear syntactic place for the derivative’s input. 

For example, consider the figure above. When the input is 𝑐, the derivative of 𝑓 is approximately 3/4. 

Using prime notation, we can express this fact quite compactly: 𝑓′(𝑐) ≈ 3/4. In contrast, expressing this 

same fact in Leibniz notation (as his d-notation is now called) is a bit more bothersome, as we must also 

supply a brief explanatory phrase:   
𝑑𝑦

𝑑𝑥
≈ 3/4  when 𝑥 = 𝑐. 

The concluding phrase is essential, since 𝑑𝑦/𝑑𝑥’s values vary.† 

Leibniz notation’s many advantages will become ever clearer as you learn more and more calculus. 

For now, you should just appreciate how 𝑑𝑦/𝑑𝑥 encapsulates the derivative’s meaning. When we see a 

derivative represented symbolically as 𝑑𝑦/𝑑𝑥 (an infinitesimal rise over an infinitesimal run), we are 

reminded that a derivative is a slope, a rate of change. In contrast, prime notation is totally arbitrary. After 

all, why use a prime and not, say, a dot?‡ 

Leibniz understood the importance of mental ergonomics. When he designed notation, he tried to fit 

it to the mind’s natural contours. As we proceed through the course, we’ll encounter numerous instances 

in which his notation will seem to do half of our thinking for us. Be thankful for Leibniz’s gift.  

 

 
* Examples: If ℎ, the height of a sunflower (in feet), changes from 3 to 7 over a period of time, then ∆ℎ = 4 feet. 

If the temperature 𝑇 drops from 9° to −11°, then ∆𝑇 = −20°. 

† The notation 
𝑑𝑦

𝑑𝑥
|
𝑐
 is occasionally used for the derivative’s value at 𝑐, but is very awkward. I won’t use it in this book.   

‡ Newton, in fact, did use a dot for derivatives. Newton and Leibniz are usually credited as the independent co-creators of calculus, 
which oversimplifies history a great deal, but is still a good first approximation to the truth. A bitter priority dispute arose 
between these two men and their followers.  
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Exercises. 

20. If 𝑦 = 𝑓(𝑥), rewrite the following statements in Leibniz notation:  𝑓′(2) = 3,   𝑓′(𝜋) = 𝑒. 

21. If 𝑦 = 𝑓(𝑥), rewrite these statements in prime notation:  
𝑑𝑦

𝑑𝑥
= 1  when 𝑥 = −2,     

𝑑𝑦

𝑑𝑥
= ln 5  when 𝑥 = √5.   

22. If 𝑓(2) = 6 and 𝑓′(2) = 3 for a function 𝑓, then in an infinitesimal neighborhood around 𝑥 = 2, the function’s 

output increases by 3 units for each 1 unit of increase in the input. (Be sure you see why: Think geometrically.) 

For most functions, the preceding statement is still approximately true for small real (i.e. not infinitesimal) 

neighborhoods of 𝑥 = 2. Thus, increasing the input variable from 2 to 2.001 should cause the output variable to 

increase from 6 to approximately 6 + 3(. 001) = 6.003. 

a) Convince yourself that the approximation described in the preceding paragraph should indeed be reasonable 

(even though the neighborhood isn’t infinitesimal), provided the graph of 𝑓 isn’t too intensely curved near the 

point (2, 6). As always, draw pictures to aid your intuition. 

b) If 𝑓(5) = 8, and 𝑓′(5) = 2.2, approximate the value of 𝑓(5.002). 

c) If 𝑔(0) = 2, and 𝑔′(0) = −1.5, approximate the value of 𝑔(0.003). 

d) If 𝑠(𝑥) = sin 𝑥 (where 𝑥 is measured in radians), we’ll soon be able to prove that 𝑠′(𝜋) = −1. Assuming this 

fact for now, approximate the value of sin(3.19). Then check your answer with a calculator. 

e) TRUE of FALSE (explain your answer): If ℎ is a function such that ℎ(3) = 2 and ℎ′(3) = 4, it is reasonable for 

us to assume that ℎ(10) ≈ 2 + 4(7) = 30.   

23. We often read  𝑑𝑦/𝑑𝑥 aloud as “the derivative of 𝑦 with respect to 𝑥”. Similarly, 𝑑𝑧/𝑑𝑞 is the derivative of 𝑧 

with respect to 𝑞. In applications, this feature of Leibniz notation helps us keep track of units of measurement. 

For example, if 𝐾 represents an object’s kinetic energy (in joules) at time 𝑡 (in seconds), then 𝑑𝐾/𝑑𝑡 is the 

derivative of kinetic energy with respect to time; it tells us how kinetic energy changes in response to changes in 

time. Moreover, the Leibniz notation makes it clear that 𝑑𝐾/𝑑𝑡 is measured in joules per second. 

a) If, in the preceding kinetic energy example, we know that when 𝑡 = 60, we have 𝐾 = 80 and 𝑑𝐾/𝑑𝑡 = 12, 

then roughly how much kinetic energy might we reasonably expect the object to have when 𝑡 = 60.5? 

b) Suppose that 𝐴 represents an area that grows and shrinks over time. Use Leibniz notation to express the 

following: After 5 minutes, the area is shrinking at a rate of 2 square meters per minute. 

c) If 𝑧 = 𝑔(𝑡), rewrite 𝑔′(6) = 4 in Leibniz notation. 

d) Let 𝐶 be the total cost (in dollars) of producing 𝑄 widgets per year. Boosting 𝑄 past certain values might 

require costly changes such as purchasing more machinery or hiring more employees. The derivative 𝑑𝐶/𝑑𝑄 

is known in economics as the “marginal cost function”. In what units would values of 𝑑𝐶/𝑑𝑄 be measured?  

24. Leibniz notation’s explicit reference to the derivative’s input variable (see the previous exercise) is especially 

useful when “the” input variable can be viewed in multiple ways. 

Consider, for instance, a conical vat. Suppose water pours into the (initially empty) vat 

at a constant rate of 3 ft3/min. Let 𝑉 be the volume of water in the cone, and let ℎ be the 

water’s “height”, as indicated in the figure. Naturally, we can view 𝑉 as a function of 𝑡, the 

time elapsed since the water began pouring in. However, we can also view 𝑉 as a function 

of ℎ; if the water’s height is known, then the volume of the water is, in principle, determined 

– regardless of whether you know how to determine its numerical value.  

Since 𝑉 can be considered a function of 𝑡 or ℎ, we can distinguish between two different derivatives of 𝑉: 

𝑑𝑉/𝑑𝑡 and 𝑑𝑉/𝑑ℎ. The former measures the rate at which the volume changes with respect to time. This, we 

are told, is constant: 𝑑𝑉 𝑑𝑡⁄ = 3 ft3/min. The latter, 𝑑𝑉/𝑑ℎ, measures the rate at which the volume changes 

with respect to the water’s height. A little thought will convince you that this is not a constant rate of change.  
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a) Have the little thought mentioned in the previous sentence. Namely, to convince yourself that 𝑑𝑉/𝑑ℎ is not a 

constant function of ℎ, imagine two different situations corresponding to different values of ℎ. First, let ℎ be 

very small, so that there is hardly any water in the vat. If, in this case, we increase ℎ by a tiny amount 𝑑ℎ, 

consider the resulting change in volume, 𝑑𝑉. Draw a picture, and indicate what 𝑑𝑉 represents geometrically. 

(You need not calculate anything.) Second, let ℎ be relatively large, so that the vat is, say, 3/4 full. Again, 

imagine increasing ℎ by the same tiny amount 𝑑ℎ. Draw another picture and think about what 𝑑𝑉 represents 

geometrically. Since applying the same little nudge to the input variable 𝑑ℎ yields different changes to the 

output variable, 𝑑𝑉, the ratio 𝑑𝑉/𝑑ℎ has a different value in each case. Hence, 𝑑𝑉/𝑑ℎ is not constant. 

b) Which is greater: 𝑑𝑉/𝑑ℎ when ℎ is small, or 𝑑𝑉/𝑑ℎ when ℎ is large? 

c) If the cone were upside down, so that water poured into its vertex at a constant rate, which would be greater: 

𝑑𝑉/𝑑ℎ when ℎ is small, or 𝑑𝑉/𝑑ℎ when ℎ is large? Draw a picture. 

d) If the water were pouring into a spherical tank of radius 10 feet, rank the following in numerical order: 

𝑑𝑉/𝑑ℎ when ℎ = 1,        𝑑𝑉/𝑑ℎ when ℎ = 5,        𝑑𝑉/𝑑ℎ when ℎ = 10,        𝑑𝑉/𝑑ℎ when ℎ = 17. 

e) Give an example of a shape for a tank that would ensure that 𝑑𝑉/𝑑ℎ is constant if 𝑑𝑉/𝑑𝑡 is constant. 

25. When 𝑦 = 𝑓(𝑥), we can write 𝑑𝑦/𝑑𝑥 in the form 𝑑(𝑓(𝑥))/𝑑𝑥. Thus, for example, we may rewrite 

If 𝑦 = tan 𝑥, then  
𝑑𝑦

𝑑𝑥
= 4 when 𝑥 =

𝜋

3
, 

in the following more concise form: 

 
𝑑(tan𝑥)

𝑑𝑥
= 4  when 𝑥 =

𝜋

3
. 

Naturally, all the usual interpretations hold. Here, for example, the notation is telling us that in the infinitesimal 

neighborhood of 𝑥 = 𝜋/3, the output value of tan 𝑥 increases by four units for each unit by which its input 𝑥 is 

increased. Use this notation to rewrite the following statements. 

a) If 𝑦 = ln 𝑥, then  
𝑑𝑦

𝑑𝑥
= 5 when 𝑥 =

1

5
.   b) If 𝑦 = 3𝑥3 + 1, then  

𝑑𝑦

𝑑𝑥
= 36 when 𝑥 = 2. 

c) If 𝑦 = 2𝑥, then  
𝑑𝑦

𝑑𝑥
= ln 16 when 𝑥 = 2.  d) If 𝑦 = −4𝑥 + 2, then  

𝑑𝑦

𝑑𝑥
= −4. 

e) In part d, why wasn’t it necessary to include a qualifying statement about an 𝑥-value? Think geometrically. 
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An Infinitesimal Bit of an Infinitesimal Bit 

“So naturalists observe, a flea 

Hath smaller fleas that on him prey; 

And these have smaller fleas to bite 'em. 

And so proceed ad infinitum.” 

 - Jonathan Swift, “On Poetry: A Rhapsody” 

 

Never forget: Ultimately, we are interested in real-scale phenomena. We work with infinitesimal bits of 

real magnitudes (𝑑𝑥, 𝑑𝑧, or what have you) precisely because they help us understand real phenomena. 

In contrast, infinitesimal bits of infinitesimals (“second-order infinitesimals” such as (𝑑𝑥)2 or 𝑑𝑢 ∙ 𝑑𝑣) 

mean nothing to us; when they appear in the same context as real magnitudes, we simply disregard them 

as though they were zeros. For instance, if we expand the binomial (𝑥 + 𝑑𝑥)2 to obtain 

(𝑥 + 𝑑𝑥)2 = 𝑥2 + 2𝑥(𝑑𝑥) + (𝑑𝑥)2, 

we treat the second-order infinitesimal (𝑑𝑥)2 as a zero, and thus we write (𝑥 + 𝑑𝑥)2 = 𝑥2 + 2𝑥(𝑑𝑥).   

It helps to imagine that the “calculus microscope” we described earlier (on the chapter’s first page) 

can magnify first-order infinitesimals to visibility, but is too weak to detect higher-order infinitesimals. 

This “weakness” actually puts our eye in an ideal position – neither too close, nor too far away from the 

real magnitudes that we wish to describe. Could a more powerful microscope make sense of higher-order 

infinitesimals? Perhaps, but we need not concern ourselves with such questions here; we are interested 

in infinitesimals not for their own sake, but rather for what they tell us about ordinary, real-scale 

phenomena. For that purpose, first-order infinitesimals suffice. 

 

Exercises. 
26. Expand the following. 

a) (𝑥 − 𝑑𝑥)2  b) (𝑥 + 𝑑𝑥)2 − 𝑥2           c) (𝑥 + 𝑑𝑥)3           d) (𝑢 + 𝑑𝑢)(𝑣 + 𝑑𝑣) 

27. If we increase a function 𝑓’s input from 𝑥 to 𝑥 + 𝑑𝑥, its output changes from 𝑓(𝑥) to 𝑓(𝑥 + 𝑑𝑥). Consequently, 

the expression 𝒅(𝒇(𝒙)), which denotes the infinitesimal change in 𝑓’s value, is 𝒇(𝒙 + 𝒅𝒙) − 𝒇(𝒙). 

[Thus, for example, 𝑑(𝑥2) = (𝑥 + 𝑑𝑥)2 − 𝑥2. And so, by exercise 26𝑏, 𝑑(𝑥2) = 2𝑥𝑑𝑥.] 

Your problem: Show that… 

a)  𝑑(𝑥3) = 3𝑥2𝑑𝑥          b)  𝑑(3𝑥2) = 6𝑥𝑑𝑥          c)  𝑑(𝑎𝑥2 + 𝑏𝑥 + 𝑐) = (2𝑎𝑥 + 𝑏)𝑑𝑥. 

28. Expand the following infinitesimal changes by writing them as differences. 

a)  𝑑(𝑓(𝑥))              b) 𝑑(5𝑓(𝑥))              c) 𝑑(𝑓(𝑥) + 𝑔(𝑥))              d) 𝑑(𝑓(𝑥)𝑔(𝑥))              e) 𝑑 (𝑓(𝑔(𝑥)))  

29. On the graph of 𝑦 = 𝑥2, Let 𝑃 be the point (3,9). Let 𝑄 be a point, infinitesimally close to 𝑃, whose coordinates 

are (3 + 𝑑𝑥, (3 + 𝑑𝑥)2). As we move from 𝑃 to 𝑄, the infinitesimal change in 𝑥 is 𝑑𝑥. 

a) Express 𝑑𝑦, the corresponding infinitesimal change in 𝑦, in terms of 𝑑𝑥.  

b) Since 𝑦 = 𝑥2, we have 𝑑𝑦 = 𝑑(𝑥2). Use this, and your result from part (a) to compute  
𝑑(𝑥2)

𝑑𝑥
 when 𝑥 = 3.  

c) Use the ideas in this problem to find  
𝑑(𝑥2)

𝑑𝑥
 when 𝑥 = −1/2.  

30. a) Show that  

𝑢 + 𝑑𝑢

𝑣 + 𝑑𝑣
  −  

𝑢

𝑣

𝑑𝑥
=
𝑣𝑑𝑢 − 𝑢𝑑𝑣

𝑣2𝑑𝑥
        b) Show that the right-hand side can be rewritten as  

𝑣(
𝑑𝑢

𝑑𝑥
) − 𝑢(

𝑑𝑣

𝑑𝑥
)

𝑣2
. 
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The Derivative of 𝒚 = 𝒙𝟐   
 

Differential calculus teaches us nothing about linear functions; if we put the graph of a linear function 

under the calculus microscope, we see the same old straight line that had been visible to the naked eye. 

In exercise 10, you learned all there is to know about linear functions’ derivatives: Linear functions have 

constant slopes, so their derivatives are constant functions. End of story. 

Calculus exists to analyze nonlinear functions. Perhaps the simplest nonlinear function is 𝑦 = 𝑥2, 

whose derivative we’ll now compute. This will be our first nontrivial example of a derivative. Note well: 

We are not merely looking for this function’s derivative at a particular point (say, 𝑑𝑦 𝑑𝑥⁄  when 𝑥 = 3), 

which is a number (such as you found in exercise 29b); we seek the derivative 𝑑𝑦 𝑑𝑥⁄  itself, a function. 

Once we’ve found a formula for 𝑑𝑦/𝑑𝑥, we can evaluate it wherever we wish.  

Problem. Find the derivative of the function 𝑦 = 𝑥2. 

Solution. At each point 𝑥 in the function’s 

domain, the derivative’s output will be the 

function’s local rate of change there, 𝑑𝑦/𝑑𝑥. 

To compute this ratio, we observe that when 

𝑥 is increased by an infinitesimal amount 𝑑𝑥 

(which must be exaggerated in the figure!), 

the corresponding change in 𝑦 is 

𝑑𝑦 = (𝑥 + 𝑑𝑥)2 − 𝑥2 

    = 2𝑥(𝑑𝑥).* 

Thus, for any 𝑥 in the domain, we have 

𝑑𝑦

𝑑𝑥
=
2𝑥(𝑑𝑥)

𝑑𝑥
= 𝟐𝒙.       

We’ve just proved that the derivative of 𝑥2 is 2𝑥. That is, 

𝑑(𝑥2)

𝑑𝑥
= 2𝑥. 

We often state results of this type (“the derivative of 𝐴 is 𝐵”) in the following alternate form:  

𝑑

𝑑𝑥
(𝑥2) = 2𝑥. 

Here, we think of the symbol 𝒅/𝒅𝒙 as an operator that turns a function into its derivative.† 

Our first substantial project in differential calculus, which we’ll begin after the next set of exercises, 

will be to discover a method for rapidly finding the derivative of any polynomial whatsoever.  

 

 
* See exercise 26𝑏 above. 
† Just as a function turns numbers into numbers, an operator turns functions into functions. 
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Exercises. 

31. Knowing 
𝑑(𝑥2)

𝑑𝑥
= 2𝑥 in general, you should need only seconds to find 

𝑑(𝑥2)

𝑑𝑥
 when 𝑥 = 4 in particular. Find it. 

32. Find the equation of the line tangent to the graph of 𝑦 = 𝑥2 at point (−3,9). 

33. a) Find the coordinates of the one point on the graph of 𝑦 = 𝑥2 at which the function’s slope is exactly −5.  

b) Find the equation of the tangent to the graph at the point you found in part (a). 

34. Is there a non-horizontal tangent to 𝑦 = 𝑥2 that passes through (1 3⁄ , 0)? If so, find the point of tangency.  

35. Use the ideas in this section to find  
𝑑(𝑎𝑥2 + 𝑏𝑥 + 𝑐)

𝑑𝑥
. 

36. a) Use the ideas in this section to find  
𝑑(𝑥3)

𝑑𝑥
.        b) Use part (a) to find  

𝑑(𝑥3)

𝑑𝑥
 when 𝑥 = √2, and when 𝑥 = 𝜋. 

c) Find the equation of the line tangent to the graph of 𝑦 = 𝑥3 at point (1,1). 

d) Does the tangent line from part (c) cross the graph again? If so, where? If not, how do you know? 

    [Hint: At some point, you’ll need to solve a cubic equation. Even though you (presumably) do not know how to 

solve cubics in general, you can solve this particular one because you already know one of its solutions.]  

37. The notations 
𝑑(𝑓(𝑥))

𝑑𝑥
 and 

𝑑

𝑑𝑥
(𝑓(𝑥)) are equivalent and are used interchangeably. To accustom yourself to these 

notational dialects, rewrite the following expressions in the other form. (Yes, this exercise is trivial.) 

a) 
𝑑(𝑥2)

𝑑𝑥
    b) 

𝑑(sin𝑥)

𝑑𝑥
  c) 

𝑑

𝑑𝑥
(ln 𝑥)  d) 

𝑑

𝑑𝑥
(
1

𝑥
) 

 

Derivatives of Polynomials 
‘He is like a mere x. I do not mean x the kiss symbol but, as we allude 
in algebra terminology, to denote an unknown quantity.’ 

‘What the hell this algebra's got to do with me, old feller?’ 

- All About H. Hatterr, G.V. Desani. 

 

Let us revisit some basic algebra you learned on your mother’s knee. 

How does one multiply algebraic expressions such as (𝑎 + 𝑏 + 𝑐)(𝑑 + 𝑒 + 𝑓)? Well, each term in the 

first set of parentheses must “shake hands” with each term in the second set. The sum of all such 

“handshakes” (i.e. multiplications) is the product we seek. 

For example, to multiply (𝑎 + 𝑏 + 𝑐)(𝑑 + 𝑒 + 𝑓), first 𝑎 shakes hands with each term in the second 

set (yielding 𝑎𝑑, 𝑎𝑒, and 𝑎𝑓), then 𝑏 does (𝑏𝑑, 𝑏𝑒, and 𝑏𝑓), and finally, 𝑐 does (𝑐𝑑, 𝑐𝑒, and 𝑐𝑓). Thus,  

(𝑎 + 𝑏 + 𝑐)(𝑑 + 𝑒 + 𝑓) = 𝑎𝑑 + 𝑎𝑒 + 𝑎𝑓 + 𝑏𝑑 + 𝑏𝑒 + 𝑏𝑓 + 𝑐𝑑 + 𝑐𝑒 + 𝑐𝑓. 

Naturally, this works regardless of how many terms are in each parenthetical expression. Applied, for 

instance, to the very simple product (𝑎 + 𝑏)(𝑐 + 𝑑), the handshake game produces the familiar “FOIL” 

expansion you learned in your first algebra course. 

If one wishes to multiply not two, but three expressions, then each “handshake” must be a three-way 

handshake, with one handshaker drawn from each of the three expressions. For example, 

(𝑎 + 𝑏)(𝑐 + 𝑑)(𝑒 + 𝑓) = 𝑎𝑐𝑒 + 𝑎𝑐𝑓 + 𝑎𝑑𝑒 + 𝑎𝑑𝑓 + 𝑏𝑐𝑒 + 𝑏𝑐𝑓 + 𝑏𝑑𝑒 + 𝑏𝑑𝑓. 

Similarly, multiplying four expressions requires four-way handshakes, while multiplying 𝑛 expressions, as 

we’ll need to do in a moment, requires 𝑛-way handshakes. Let us rest our hands and return to calculus. 
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Problem. Find the derivative of the function 𝑦 = 𝑥𝑛, where 𝑛 is a whole number. 

Solution. We begin by noting that  

𝑑(𝑥𝑛)

𝑑𝑥
=
(𝑥 + 𝑑𝑥)𝑛 − 𝑥𝑛

𝑑𝑥
. 

To proceed, observe that the binomial in the numerator is 

(𝑥 + 𝑑𝑥)𝑛 = (𝑥 + 𝑑𝑥)(𝑥 + 𝑑𝑥)⋯ (𝑥 + 𝑑𝑥)⏞                  
𝑛 times

. 

To multiply this out, we must sum all possible 𝑛-way “handshakes” of the sort described above. 

The simplest of these 𝑛-way handshakes will involve all 𝑛 of the 𝑥’s and none of the 𝑑𝑥’s. This 

handshake’s contribution to the expansion of (𝑥 + 𝑑𝑥)𝑛 is obviously 𝒙𝒏.  

Among the many other 𝑛-way handshakes, some will involve (𝑛 − 1) of the 𝑥’s and one 𝑑𝑥. In 

fact, there will be exactly 𝑛 handshakes of this sort. (The first of them involves the 𝑑𝑥 from the first 

parenthetical expression and the 𝑥’s from all the other groups; the second involves the 𝑑𝑥 from the 

second parenthetical expression and the 𝑥’s from all the other groups – and so forth.) Since each of 

these 𝑛 handshakes will add an 𝑥𝑛−1𝑑𝑥 to the expansion of (𝑥 + 𝑑𝑥)𝑛, their net contribution to 

the expansion will be 𝒏𝒙𝒏−𝟏𝒅𝒙. 

Each of the remaining handshakes involves at least two 𝑑𝑥’s, so their contributions to the 

expansion will be higher-order infinitesimals, which means that we can simply disregard them! 

Therefore, the expansion we seek is (𝑥 + 𝑑𝑥)𝑛 = 𝑥𝑛 + 𝑛𝑥𝑛−1𝑑𝑥. 

Consequently, 

𝑑(𝑥𝑛)

𝑑𝑥
=
(𝑥 + 𝑑𝑥)𝑛 − 𝑥𝑛

𝑑𝑥
 

              =
(𝑥𝑛 + 𝑛𝑥𝑛−1𝑑𝑥) − 𝑥𝑛

𝑑𝑥
 

= 𝑛𝑥𝑛−1 .       

The result we’ve just established is important enough to merit its own box. 

 

 

 

 

This is a preliminary version inasmuch as we will eventually prove that the power rule holds not just for 

whole number powers, but for all real powers whatsoever.  

Example. By the power rule,  
𝑑

𝑑𝑥
(𝑥7) = 7𝑥6.   

  

The Power Rule (Preliminary Version). 

For all whole numbers 𝑛,  

 
𝒅

𝒅𝒙
(𝒙𝒏) = 𝒏𝒙𝒏−𝟏. 
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A quick note on language: We do not say that we “derive” 𝑥7 to obtain its derivative, 7𝑥6. Rather, we 

“take the derivative of” 𝑥7.* Many students commit this faux pas. Don’t be one of them.  

Over the next few chapters, you’ll learn how to take many functions’ derivatives. Along with 

derivatives of specific functions (𝑥𝑛, sin 𝑥, ln 𝑥, etc.), you’ll learn structural rules that let you take 

derivatives of nasty functions built up from simple ones (such as 𝑥2 ln 𝑥 + 4 sin(5𝑥)). The first structural 

rules we’ll need are the derivative’s linearity properties. 

Proof. To prove the first linearity property, we just follow our noses: 

𝑑

𝑑𝑥
(𝑐𝑓(𝑥)) =

𝑑(𝑐𝑓(𝑥))

𝑑𝑥
=
𝑐𝑓(𝑥 + 𝑑𝑥) − 𝑐𝑓(𝑥)

𝑑𝑥
  

               = 𝑐 (
𝑓(𝑥 + 𝑑𝑥) − 𝑓(𝑥)

𝑑𝑥
) = 𝑐 (

𝑑(𝑓(𝑥))

𝑑𝑥
) = 𝑐

𝑑

𝑑𝑥
(𝑓(𝑥)). 

Proving the second property is just as simple.  

  
𝑑

𝑑𝑥
(𝑓(𝑥) + 𝑔(𝑥)) =

𝑑(𝑓(𝑥) + 𝑔(𝑥))

𝑑𝑥
=
(𝑓(𝑥 + 𝑑𝑥) + 𝑔(𝑥 + 𝑑𝑥)) − (𝑓(𝑥) + 𝑔(𝑥))

𝑑𝑥
  

      =
(𝑓(𝑥 + 𝑑𝑥) − 𝑓(𝑥)) + (𝑔(𝑥 + 𝑑𝑥) − 𝑔(𝑥))

𝑑𝑥
=
𝑓(𝑥 + 𝑑𝑥) − 𝑓(𝑥)

𝑑𝑥
+
𝑔(𝑥 + 𝑑𝑥) − 𝑔(𝑥)

𝑑𝑥
  

      =
𝑑(𝑓(𝑥))

𝑑𝑥
+
𝑑(𝑔(𝑥))

𝑑𝑥
=

𝑑

𝑑𝑥
(𝑓(𝑥)) +

𝑑

𝑑𝑥
(𝑔(𝑥)).     ∎ 

If that proof gave you any trouble, please work through it again after revisiting exercises 27, 28, and 37. 

The justification for each equals sign in the proof should be crystal clear to you. 

Using the power rule and the linearity properties, we can find any polynomial’s derivative in a matter 

of seconds, as the following example and exercises will convince you. 

Example. Find the derivative of 𝑦 = 5𝑥6 + 3𝑥4. 

Solution. 
𝑑

𝑑𝑥
(5𝑥6 + 3𝑥4) =

𝑑

𝑑𝑥
(5𝑥6) +

𝑑

𝑑𝑥
(3𝑥4) (by one of the linearity properties) 

            = 5
𝑑

𝑑𝑥
(𝑥6) + 3

𝑑

𝑑𝑥
(𝑥4) (by the other linearity property) 

  = 5(6𝑥5) + 3(4𝑥3)  (by the power rule) 

  = 30𝑥5 + 12𝑥3 .     

 
* One may also use the verb differentiate here. (E.g. If we differentiate 𝑥7, we obtain 7𝑥6.) However, since this sense of 

“differentiate” has nothing in common with the verb’s ordinary meaning, those who use it must take care to differentiate 
differentiate from differentiate. 

Linearity Properties of the Derivative. 

𝒊.  The derivative of a constant times a function is the constant times the function’s derivative: 

𝑑

𝑑𝑥
(𝑐𝑓(𝑥)) = 𝑐

𝑑

𝑑𝑥
(𝑓(𝑥)).           

𝒊𝒊. The derivative of a sum of functions is the sum of their derivatives:       

       
𝑑

𝑑𝑥
(𝑓(𝑥) + 𝑔(𝑥)) =

𝑑

𝑑𝑥
(𝑓(𝑥)) +

𝑑

𝑑𝑥
(𝑔(𝑥)).  
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Exercises. 

38. The power rule is geometrically obvious in the special cases when 𝑛 = 1 or 𝑛 = 0. Explain why.  

39. If we combine the power rule and the first linearity property, we find that 
𝑑

𝑑𝑥
(𝑐𝑥𝑛) is equal to what? 

40. Use the result of exercise 39 to find the following derivatives in one step: 

a) 
𝑑

𝑑𝑥
(5𝑥3)    b) 

𝑑

𝑑𝑥
(−3𝑥7)   c) 

𝑑

𝑑𝑥
(
𝜋

2
𝑥2) 

41. By combining the result of exercise 39 and the second linearity property, find the following derivatives. 

a) 
𝑑

𝑑𝑥
(3𝑥3 + 2𝑥2)   b) 

𝑑

𝑑𝑥
(−10𝑥5 +

1

4
𝑥3)  c) 

𝑑

𝑑𝑥
(√2𝑥 + √3) 

42. Prove that the derivative of a difference of functions is the difference of their derivatives. 

43. Use the result of the previous exercise to find the following derivatives. 

a) 
𝑑

𝑑𝑥
(5𝑥3 − 2𝑥4)   b) 

𝑑

𝑑𝑥
(3𝑥2 − 5)    c) 

𝑑

𝑑𝑥
(−

2

5
𝑥10 − 𝜋) 

44. Convince yourself that the derivative of a sum of three (or more) functions is the sum of their derivatives. Then 

use this fact to compute the following, ideally writing down each derivative in a single step: 

a) 
𝑑

𝑑𝑥
(2𝑥3 + 4𝑥2 + 5𝑥 + 1)  b) 

𝑑

𝑑𝑥
(
3

4
𝑥3 − 9𝑥2 − √5𝑥 + 2) c) 

𝑑

𝑑𝑥
(−𝑥6 + 𝑥3 − 4𝑥2 + 3) 

45. The derivative of a product of functions is not the product of their derivatives! Show, for example, that 

𝑑

𝑑𝑥
(𝑥5𝑥3) ≠ (

𝑑

𝑑𝑥
(𝑥5)) (

𝑑

𝑑𝑥
(𝑥3)) . 

46. a) True or false:  
𝑑

𝑑𝑥
((2𝑥 + 1)3) = 3(2𝑥 + 1)2. Explain your answer. 

b) What, in fact, is the derivative of 𝑦 = (2𝑥 + 1)3? 

47. The derivative of a quotient of functions is not the quotient of their derivatives! Demonstrate this by providing 

a counterexample, as in exercise 45. 

48. If 𝑦 = 2𝜋3, what is 𝑑𝑦/𝑑𝑥? 

49. What does the power rule tell us about 
𝑑

𝑑𝑥
(3𝑥)? 

50. Using symbols other than 𝑥 and 𝑦 for a function’s independent and dependent variables does not change the 

formal rules for finding derivatives. With this in mind, find the derivatives of these functions: 

a) 𝑓(𝑡) = 2𝑡3 − 3𝑡2 + 5  b) 𝑔(𝑧) =
1

4
𝑧4 +

1

3
𝑧3 +

1

2
𝑧2 + 𝑧  c) 𝐴(𝑟) = 𝜋𝑟2   

51. Recall that the graph of any quadratic function (of the form 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐) is a parabola whose axis of 

symmetry is parallel to the 𝑦-axis. Clearly, such a graph has a horizontal tangent only at its vertex. This 

observation yields a quick way to find the vertex’s 𝑥-coordinate: Set the quadratic’s derivative equal to zero. Be 

sure you understand this idea, then use it – together with the fact that a parabola of this sort opens up or down 

according to whether its leading coefficient is positive or negative – to sketch graphs of the following quadratics. 

Include the coordinates of each parabola’s vertex and of any intersections with the axes. 

a) 𝑦 = 𝑥2 + 3𝑥 + 4   b) 𝑓(𝑥) = −2𝑥2 + 3𝑥 − 4   c) 𝑔(𝑥) = 𝜋𝑥2 + 𝑒𝑥 + √2 

52. Find the equation of the line tangent to 𝑦 = 𝑥3 − 2𝑥2 + 3𝑥 + 1 at (1,3).  

53. There is exactly one tangent to 𝑦 = 𝑥3 that passes through (0,2). Find the point of tangency.   
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One Last Example 

“Imagine, if you will, that the stone, while in motion, could think…  Such a stone, 

being conscious merely of its own endeavor… would consider itself completely 

free, would think it continued in motion solely by its own wish. This then is that 

human freedom which all men boast of possessing, and which consists solely 

in this: that men are conscious of their own desire, but ignorant of the causes 

whereby that desire has been determined.” 

- Spinoza, in a letter to G.H. Schuller (October, 1674) 

 

Your new ability to take polynomials’ derivatives lets you solve otherwise tricky applied problems.  

Example. Spinoza stands at a cliff’s edge, 100 feet above the ocean, and hurls a stone. Its height 

(relative to the ocean) after 𝑡 seconds is given by the formula 𝑠(𝑡) = −16𝑡2 + 64𝑡 + 100. 

Answer the following questions. 

 a) Find the stone’s vertical velocity when 𝑡 = 0.5 and when 𝑡 = 2.5.  

b) What is the stone’s maximum height? 

c) How fast is the stone moving downwards at the instant when it hits the water?  

Solution. Since 𝑠(𝑡) gives the stone’s vertical position (height in feet) after 𝑡 seconds, its derivative, 

𝑠′(𝑡) = −32𝑡 + 64, gives the stone’s vertical velocity (in ft/sec) after 𝑡 seconds.  

Thus, half a second after leaving Spinoza’s hand, the stone’s vertical velocity is 𝑠′(0.5) = 48. 

That is, at that particular instant, it is moving upwards at 48 ft/sec. After 2.5 seconds, its vertical 

velocity is 𝑠′(2.5) = −16. Hence, at that instant, the stone is moving downwards at 16 ft/sec. 

Clearly, the stone will rise for a while (have positive vertical velocity), then fall (have negative 

vertical velocity). The stone will reach its maximum height at the instant when it has stopped rising, 

but has not yet begun to fall. This occurs when its vertical velocity is zero. Solving 𝑠′(𝑡) = 0, we find 

that this maximum height occurs at 𝑡 = 2. Consequently, the stone’s maximum height will be 

𝑠(2) = 164 feet above the ocean. 

The stone hits the water when 𝑠(𝑡) = 0. This is a quadratic equation; substituting its sole 

positive solution, 𝑡 = 2 + √41/2 into our velocity function, we find that the stone’s vertical velocity 

upon impact is 𝑠′(2 + √41/2) ≈ −102.4 ft/sec.  

 

As discussed earlier, velocity’s rate of change is acceleration. In the preceding example, the stone’s 

position was given by 𝑠 = −16𝑡2 + 64𝑡 + 100, from which we deduced its velocity function: 

𝑣 =
𝑑𝑠

𝑑𝑡
= −32𝑡 + 64 . 

By taking the derivative of the velocity function, we can now determine the rock’s acceleration function: 

𝑎 =
𝑑𝑣

𝑑𝑡
= −32 , 

which agrees with Galileo’s famous discovery: Any object in free fall (i.e. with no force other than gravity 

acting upon it) accelerates downwards at a constant rate of 32 feet per second per second. 
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Exercises.  

54. Suppose a point is moving along a horizontal line. Define right as the positive direction. If the point’s position 

(relative to some fixed origin) after 𝑡 seconds is given by  𝑠 = −5 + 4𝑡 − 3𝑡2, find the time(s) at which the point 

is momentarily at rest (i.e. when its velocity is zero), the times when the point is moving to the right, and the 

times when it is moving to the left.  

55. Suppose two points are moving on the line from the previous problem, and their positions are given by 

𝑠1(𝑡) = 𝑡
2 − 6𝑡     and     𝑠2(𝑡) = −2𝑡

2 + 5𝑡. 

a) Which point is initially moving faster? 

b) When, if ever, will the two points have the same velocity? 

c) When the clock starts, the two points occupy the same position, but they separate immediately thereafter. 

Where and when will they next coincide? What will their velocities be then? Will they meet a third time? 

56. Molly Bloom throws an object down from the Rock of Gibraltar in such a manner that the distance (in meters) it 

has fallen after 𝑡 seconds is given by the function 𝑠 = 30𝑡 + 4.9𝑡2. How fast is the object moving downwards 

after 5 seconds? What is the object’s acceleration then (in m/s2)? 

57. In exercise 50c, you showed that the derivative of a circle’s area (with respect to 

its radius) is its circumference. Is this just a curious coincidence, or is there a deeper 

reason for it? Thinking geometrically will help you understand. 

If a circle’s radius 𝑟 increases infinitesimally by 𝑑𝑟 (necessarily exaggerated in 

the figure), then its area 𝐴 will increase infinitesimally by 𝑑𝐴. In the figure, 𝑑𝐴 is 

the area of the infinitesimally thin ring bounded by the two circles. In this exercise, 

you’ll consider two different geometric explanations of why 𝑑𝐴/𝑑𝑟 equals 𝐶, the 

original circle’s circumference. 

a) The first explanation is basically computational: Given that the outer circle’s radius is (𝑟 + 𝑑𝑟), express 𝑑𝐴, 

the area in the ring, in terms of 𝑟. Then divide by 𝑑𝑟, and verify that the derivative 𝑑𝐴/𝑑𝑟 is indeed 2𝜋𝑟. 

b) The second explanation cuts right to the geometric 

heart of the phenomenon; it doesn’t even involve 

the circle’s area and circumference formulas.  

Consider the figure at right. The infinitesimally 

thin ring (whose area is 𝑑𝐴) can be broken up into 

infinitesimal rectangles. Placing all the rectangles 

end to end, we can construct one rectangle, whose 

height and length will be 𝑑𝑟 and 𝐶 respectively, 

and whose area must therefore be 𝐶𝑑𝑟. However, 

its area must also be 𝑑𝐴 (since it was reformed 

from pieces of the ring). 

It follows that 𝑑𝐴 = 𝐶𝑑𝑟, which is equivalent to 𝑑𝐴 𝑑𝑟⁄ = 𝐶, as claimed. 

For many people, this argument provides a flash of insight that renders the formula 𝑑𝐴 𝑑𝑟⁄ = 𝐶 obvious. 

Others, however, are uncomfortable with it, and wonder if it sweeps something important under the rug. 

Remarkably, both views can coexist in the same mind; one can feel the flash of geometric illumination, and 

yet still wonder if the means by which it was conveyed are entirely sound. 

So, dear reader, did this argument help you see why the derivative of a circle’s area (with respect to its 

radius) is its circumference? And is there any of part of the argument that particularly troubles you? 



Full Frontal Calculus   Chapter 1: The Basic Ideas 

26 
 

58. Recall that a sphere of radius 𝑟 has volume 𝑉 = (4 3⁄ )𝜋𝑟3. The power rule tells us that 𝑑𝑉 𝑑𝑟⁄ = 4𝜋𝑟2, which is 

– as the previous problem might lead you to expect – the sphere’s surface area. Using analogs of either  

(or ideally both) of the arguments in the previous problem, try to gain insight into why this fact must be true.  

59. A square of side length 𝑥 has area 𝐴 = 𝑥2 and perimeter 𝑃 = 4𝑥. Contrary to what one might 

expect from the previous two problems, the power rule shows that 𝑑𝐴/𝑑𝑥 ≠ 𝑃. To 

understand this geometrically, consider the figure, remembering once again that as with all 

such schematic depictions of infinitesimals, you must imagine the 𝑑𝑥’s as being incomparably 

tinier than they appear. 

a) If 𝐴 represents the original square’s area (before the infinitesimal change to 𝑥), then to what part of the figure 

does 𝑑𝐴 correspond? 

b) Use analogs of either (or both) of the arguments from exercise 57 to try to gain insight into why 𝑑𝐴/𝑑𝑥 ≠ 𝑃.  

60. Dippy Dan doesn’t know how to communicate mathematical ideas. Collected below are eight samples of his 

garbled writing. Explain why his statements are gibberish, and suggest sensible alternatives that accurately 

convey what he is presumably trying to express. 

a) 
𝑑𝑦

𝑑𝑥
(𝑥3) = 3𝑥2.   b) If 𝑦 = 2𝑥4, then 

𝑑

𝑑𝑥
= 8𝑥3.       c) 

𝑑

𝑑𝑥
(𝜋𝑟2) = 2𝜋𝑟     

d) If 𝑦 = −7𝑥, then 𝑑𝑦 = −7.    e) 𝑥8 = 8𝑥7.        f) 2𝑥2 + 5𝑥2 → 7𝑥2.   

g) 
𝑑

𝑑𝑥
(3𝑥4) = 4(3𝑥3) → 12𝑥3.  h) 𝑑(3𝑥2) = 6𝑥.            i) 𝑥2

𝑑

𝑑𝑥
= 2𝑥. 

 



 

 
 

 

 

 
 

Chapter 2 

The Differential Calculus Proper 

 

 



Full Frontal Calculus   Chapter 2: The Differential Calculus Proper 

28 
 

The Derivatives of Sine and Cosine 

To discover a function’s derivative, we change its input infinitesimally, then find the resulting infinitesimal 

change in output, and finally, we take the ratio of these two infinitesimal changes. Let us do this for sine. 

Consider the figure at right, which takes place on the unit circle.    

By the definition of sine, the sine of 𝜃 is the solid point’s 𝑦-coordinate. 

Now we’ll increase sine’s input infinitesimally by 𝑑𝜃 (from 𝜃 to 𝜃 + 𝑑𝜃). 

When we do so, sine’s new output will be the hollow point’s 𝑦-coordinate. 

Thus, the infinitesimal change in sine’s output, 𝑑(sin 𝜃), is indeed the 

length of the segment that I’ve labelled as such in the figure. 

Next, note that if we measure angles in radians, the length of the arc 

between the solid and hollow points must be 𝑑𝜃.*  

This gives us the picture at right. Note that “arc” 𝐴𝑃 is straight, since 𝑑𝜃 

is infinitesimal. Moreover, the infinitesimal right triangle of which it is part 

is similar to ∆𝑂𝑃𝑄. [Proof: Any circle is perpendicular to its radii, so 𝐴�̂�𝑂 is 

a right angle. Thus, 𝐵�̂�𝐴 is 𝑂�̂�𝑄’s complement, which – as a glance at ∆𝑂𝑃𝑄 

shows – is 𝜃. Hence, ∆𝑂𝑃𝑄 ~ ∆𝑃𝐴𝐵 by AA-similarity.] Consequently, the 

ratio (leg-adjacent-to-𝜃):(hypotenuse) is the same in each triangle. That is, 

𝑑(sin𝜃)

𝑑𝜃
=
cos 𝜃

1
 . 

Thus we have the derivative we seek: The derivative of 𝐬𝐢𝐧𝜽 is 𝐜𝐨𝐬𝜽. 

You’ll be pleased to know that this intricate argument gives us cosine’s derivative as a free bonus. 

We need only observe in the figure that 𝐴𝐵 = −𝑑(cos 𝜃).† Ratios of corresponding parts being equal in 

similar triangles, we have   

−𝑑(cos 𝜃)

𝑑𝜃
=
sin𝜃

1
 . 

Multiplying both sides by −1 reveals that the derivative of 𝐜𝐨𝐬 𝜽 is −𝐬𝐢𝐧𝜽. 

To sum up, we have proved the following important results. Mark the introductory phrase well! 

 

 

 

 

 

 
* Proof: There are 2𝜋 radians in a full rotation, so an angle of 𝑑𝜃 radians is 𝑑𝜃/2𝜋 of a full rotation. Accordingly, a central angle 

of 𝑑𝜃 radians is subtended by 𝑑𝜃/2𝜋 of the circle’s circumference. Since the unit circle’s circumference is 2𝜋, the arc length 
between the solid and hollow points is 𝑑𝜃/2𝜋 of 2𝜋, which is indeed 𝑑𝜃, as claimed.   

† An explanation for the negative: Thinking about cosine’s definition reveals that the infinitesimal change 𝑑(cos 𝜃) and the length 
𝐴𝐵 have the same magnitude. Their signs, however, are opposite: 𝐴𝐵, being a length, is necessarily positive, but since the figure 
shows that increasing 𝜃 by 𝑑𝜃 causes a decrease in cosine, 𝑑(cos 𝜃) must be negative. Hence, 𝐴𝐵 = −𝑑(cos 𝜃). 

When 𝜃  is measured in radians, 

𝒅

𝒅𝜽
(𝐬𝐢𝐧𝜽) = 𝐜𝐨𝐬𝜽,   and    

𝒅

𝒅𝜽
(𝐜𝐨𝐬𝜽) = −𝐬𝐢𝐧𝜽. 
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Exercises. 

1. The variables in a function’s formula are just placeholders. For instance, 𝑓(𝑥) = 𝑥2, 𝑦 = 𝑡2, and ℎ(𝑧) = 𝑧2 all 

represent the same underlying squaring function, so they all have the same derivative (the doubling function), 

even if we express this fact with different symbols in each case: 𝑓′(𝑥) = 2𝑥,  𝑑𝑦/𝑑𝑡 = 2𝑡, and  ℎ′(𝑧) = 2𝑧.  

This being so, write down the derivatives of the following functions, using notation suitable for each case. 

a) 𝑓(𝜃) = sin 𝜃    b) 𝑧 = cos 𝑡     c) 𝑥 = sin 𝑦       d) 𝐵 = cos 𝛼          e) 𝑔(𝑤) = sin𝑤. 

2. Combining this section’s results with the derivative’s linearity properties, find the derivatives of the following. 

a) 𝑓(𝑥) = 3sin 𝑥 − 5 cos 𝑥  b) 𝑦 = 𝜋𝑡2 + √2sin 𝑡 + 𝑒5        c) 𝑔(𝑥) = −cos 𝑥 − sin 𝑥 

3. If 𝑦 = cos 𝑥, what is (𝑦′)2 + 𝑦2? 

4. Pinpoint the precise place in our derivation of sine’s derivative where we used radians. Then, by making 

appropriate adjustments in the rest of the argument, determine the derivative of sin 𝜃 if one measures angles in 

degrees. You’ll find the final result is slightly different (and messier) than when we measure angles in radians. 

If calculus did not exist, neither would radians. Mathematicians and scientists adopted radian measure 

primarily to ensure that sine’s derivative is as simple as possible. Any other angle measure (degrees, gradians, or 

what have you) yields a derivative to which an ugly constant clings like a barnacle.  

5. Strictly speaking, the figure and argument in our derivation of sine’s derivative covers only the case in which 𝜃 lies 

in the first quadrant. We can easily extend the result to all values of 𝜃, though the details are a bit tedious, which 

is why I omitted them. If 𝜃 lies in the second quadrant, for example, increasing 𝜃 causes sin 𝜃 to decrease, with 

the result that, in the figure, one of the infinitesimal right triangle’s sides would be −𝑑(sin 𝜃) instead of 𝑑(sin 𝜃). 

Draw a picture of this second-quadrant case, and verify that a compensating change in the other right triangle 

ensures that sine’s derivative is still cosine. (Then, should you feel so inclined, you can cross the last "𝑡" and dot 

the final "𝑖" by verifying that the result still holds when 𝜃 lies in quadrants three or four.) 

6. For very small values of 𝑥 (where 𝑥 is measured in radians), sin 𝑥 ≈ 𝑥. Explain why this approximation, which is 

frequently used by scientists and engineers, holds. [Hint: Find the tangent to the graph of 𝑦 = sin 𝑥 at 𝑥 = 0.] 

7. To find the derivative of a composite function such as 𝑦 = sin(5𝑥 + 2) requires a little trickery. The trick is to 

rewrite it in terms of its simple components: 

𝑦 = sin 𝑢,   where   𝑢 = 5𝑥 + 2. 

So far, we’ve expressed 𝑦 as a simple function of 𝑢, which in turn is a simple function of 𝑥. Having accomplished 

this, it is easy to find 𝑑𝑦/𝑑𝑥. We need only make the general observation that 

𝑑𝑦

𝑑𝑥
=
𝑑𝑦

𝑑𝑢
∙
𝑑𝑢

𝑑𝑥
  . 

Applied to our particular function, this yields 

𝑑𝑦

𝑑𝑥
= (cos 𝑢)5. 

Substituting 5𝑥 + 2 back in for 𝑢 (and moving that 5 to its customary location), we have our derivative: 

𝑑𝑦

𝑑𝑥
= 5 cos(5𝑥 + 2). 

Use this trick to find the derivatives of the following functions. 

a) 𝑦 = sin(3𝑥 + 6)  b) 𝑦 = cos(3𝑥2)  c) 𝑦 = sin(cos 𝑥)  d) 𝑦 = (3𝑥 + 1)50 

e) 𝑦 = sin2 𝑥  f) 𝑦 = 2 sin 𝑥 cos 𝑥    [Hint: A trigonometric identity will help.] 
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8. Everyone knows that in the figure at right, 𝑂𝐴 = cos 𝜃 and 𝐴𝐵 = sin 𝜃. Surprisingly 

few students (or even teachers) of trigonometry know that the tangent function also 

lives on the unit circle. Its location relative to the unit circle explains why the tangent 

function is called the tangent function. 

a) Using similar triangles and the “SOH CAH TOA” definitions from right-angle 

trigonometry, prove that 𝑃𝑇 = tan 𝜃. 

b) The secant function also lives on the unit circle. Prove that 𝑂𝑃 = sec 𝜃. 

c) The Latin verbs tangere and secare mean “to touch” and “to cut” respectively. 

What does this have to do with lines 𝑃𝑇, 𝑃𝑂, and the circle? (A-ha: Now you 

know why secant is called secant.) 

d) The one trigonometric identity everyone remembers is the “Pythagorean Identity,” cos2 𝜃 + sin2 𝜃 = 1. 

Explain this famous identity’s name by thinking about ∆𝑂𝐴𝐵 in the figure. 

e) There is an alternate version of the Pythagorean identity that often comes in handy in integral calculus: 

1 + tan2 𝜃 = sec2 𝜃. Explain how the truth of this identity, too, can be seen in the figure. 

f) Those of a more algebraic mindset can derive the alternate Pythagorean identity from the ordinary one by 

dividing both sides by cos2 𝜃. Verify that this is so. 

9. Now that you know where tan 𝜃 and sec 𝜃 live on the unit circle, we can find 

their derivatives. (We’ll soon learn how to find them algebraically, but doing 

it geometrically is more aesthetically satisfying.) 

a) In the figure at right, the infinitesimal increment 𝑑𝜃 is necessarily 

exaggerated. Convince yourself that, despite appearances, ∆𝑃𝑄𝑅 

represents an infinitesimal right triangle. 

b) Explain why 𝑃𝑅 = 𝑑(tan 𝜃). 

c) If we measure angles in radians, explain why arc 𝑄𝑃 has length sec 𝜃 𝑑𝜃. 

d) Explain why ∆𝑃𝑄𝑅 is similar to ∆𝑂𝐴𝐵. 

e) Use this similarity (plus a little algebra) to prove that 

𝑑(tan 𝜃)

𝑑𝜃
= sec2 𝜃. 

f) Explain why 𝑄𝑅 = 𝑑(sec 𝜃). 

g) Use similar triangles (plus a little algebra) to prove that  

𝑑(sec 𝜃)

𝑑𝜃
= sec 𝜃 tan 𝜃. 

10. Poor cotangent and cosecant, the least loved of the six trigonometric ratios, are also denizens of the unit circle. 

a) In the figure at right, prove that 𝑃𝐶 = cot 𝜃.  

b) Prove that 𝑃𝑂 = csc 𝜃. 

c) Use the figure to explain another alternate version of the 

Pythagorean identity: 1 + cot2 𝜃 = csc2 𝜃. 

d) Explain how to derive the identity in part (c) from the 

ordinary Pythagorean identity with a little algebra. 

e) Using arguments like those you used in exercise 9, discover 

the derivatives of cot 𝜃 and csc 𝜃. [Hint: You’ll need to watch 

out for negatives, as in the derivation of cosine’s derivative 

above. For instance, you’ll need to identify a line segment 

whose length is −𝑑(cot 𝜃).] 
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The Product Rule 

The derivative of a product is not a product of derivatives. (You proved this in exercise 45 of Chapter 1.) 

Here is the actual rule for a product’s derivative. 

 

 

 

 

 

Proof. If we increase the input 𝑥 by an infinitesimal amount 𝑑𝑥, then the outputs of the individual 

functions 𝑢 and 𝑣 change by infinitesimal amounts 𝑑𝑢 and 𝑑𝑣. Consequently, the value of their 

product changes from 𝑢𝑣 to (𝑢 + 𝑑𝑢)(𝑣 + 𝑑𝑣). With this in mind, we see that 

𝑑(𝑢𝑣)

𝑑𝑥
=
(𝑢 + 𝑑𝑢)(𝑣 + 𝑑𝑣) − 𝑢𝑣

𝑑𝑥
=
𝑢𝑑𝑣 + 𝑣𝑑𝑢

𝑑𝑥
= 𝑢

𝑑𝑣

𝑑𝑥
+ 𝑣

𝑑𝑢

𝑑𝑥
.      ∎ 

 

The product rule is easy to use, as the following examples demonstrate. 

Example 1. Find the derivative of 𝑦 = 𝑥2 sin 𝑥. 

Solution. Because we can view this function as a product 𝑢𝑣, where 𝑢 = 𝑥2 and 𝑣 = sin 𝑥, we 

can apply the product rule. It tells us that 

𝑑𝑦

𝑑𝑥
= (𝑥2)

𝑑

𝑑𝑥
(sin 𝑥) + (sin𝑥)

𝑑

𝑑𝑥
(𝑥2)  

    = 𝑥2 cos 𝑥 + 2𝑥 sin 𝑥.      

Example 2. Find 
𝑑

𝑑𝑥
((3𝑥3 + 𝑥) cos 𝑥). 

Solution. By the product rule,   

𝑑

𝑑𝑥
((3𝑥3 + 𝑥) cos 𝑥) = (3𝑥3 + 𝑥)

𝑑

𝑑𝑥
(cos 𝑥) + (cos 𝑥)

𝑑

𝑑𝑥
(3𝑥3 + 𝑥)  

   = −(3𝑥3 + 𝑥) sin 𝑥 + (9𝑥2 + 1) cos 𝑥.      

That’s all there is to it.  

 

Exercises. 

11. Find the derivatives of the following functions. 

a) 𝑦 = −3𝑥8 cos 𝑥          b) 𝑦 = sin 𝑥 cos 𝑥          c) 𝑦 = (9𝑥4 − 𝑥3 + 𝜋2) sin 𝑥          d) 𝑦 = 𝜋𝑥2(sin 𝑥 + cos 𝑥) 

12. Compute the derivative of 𝑦 = (2𝑥2 + 3𝑥)(5𝑥2 + 1) two different ways, and verify that the results are equal. 

13. Derive a “triple product rule” for the derivative of 𝑢𝑣𝑤 (where 𝑢, 𝑣, and 𝑤 are functions of 𝑥). 

14. Expressed in prime notation, the product rule states that (𝑓(𝑥)𝑔(𝑥))
′
= … what? 

15. If, for any given 𝑥, we can represent the outputs of two functions 𝑢 and 𝑣 by a rectangle’s sides, 

then we can demonstrate the product rule geometrically as follows. Increasing the input by 𝑑𝑥 

yields changes 𝑑𝑢 and 𝑑𝑣 to the individual outputs, and 𝑑(𝑢𝑣) will be represented by an area on 

the figure. Identify this area, compute it, and divide by 𝑑𝑥. You should obtain the product rule. 

Product Rule. If 𝑢 and 𝑣 are functions of 𝑥, then   

𝒅

𝒅𝒙
(𝒖𝒗) = 𝒖

𝒅𝒗

𝒅𝒙
+ 𝒗

𝒅𝒖

𝒅𝒙
. 
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The Quotient Rule 

The quotient rule is uglier than the product rule, but it is just as simple to use. 

 

 

 

 

 

Proof. If we increase the input 𝑥 by an infinitesimal amount 𝑑𝑥, then the outputs of the individual 

functions 𝑢 and 𝑣 change by infinitesimal amounts 𝑑𝑢 and 𝑑𝑣. Hence, the value of their quotient 

changes from 𝑢𝑣 to (𝑢 + 𝑑𝑢)/(𝑣 + 𝑑𝑣). With this in mind, we see that 

𝑑(
𝑢

𝑣
)

𝑑𝑥
=

(𝑢 + 𝑑𝑢)

(𝑣 + 𝑑𝑣)
 − 
𝑢

𝑣

𝑑𝑥
=

𝑣(𝑢 + 𝑑𝑢) − 𝑢(𝑣 + 𝑑𝑣)

𝑣(𝑣 + 𝑑𝑣)

𝑑𝑥
=
𝑣(𝑢 + 𝑑𝑢) − 𝑢(𝑣 + 𝑑𝑣)

𝑣(𝑣 + 𝑑𝑣)𝑑𝑥
=
𝑣𝑑𝑢 − 𝑢𝑑𝑣

𝑣2𝑑𝑥
 . 

Dividing the last expression’s top and bottom by 𝑑𝑥 yields the expression in the box above.   ∎ 

The following idiotic jingle will fix the quotient rule in your memory: Low dee-high minus high dee-low, 

over the square of what’s below. (“High” and “low” being the top and bottom functions in the quotient, 

while “dee” indicates “the derivative of”.)  Recite it when using the quotient rule, and all will be well. 

In exercise 9, we employed a devilishly clever geometric argument to prove that 
𝑑

𝑑𝑥
(tan 𝑥) = sec2 𝑥. 

With the quotient rule’s help, we can prove this fact mechanically, obviating the need for cleverness. 

Example 1. Prove that 
𝑑

𝑑𝑥
(tan 𝑥) = sec2 𝑥.  

Solution. Thanks to a well-known trigonometric identity for tangent, we have 

𝑑

𝑑𝑥
(tan𝑥) =

𝑑

𝑑𝑥
(
sin𝑥

cos𝑥
) =

(cos𝑥) 
𝑑

𝑑𝑥
(sin𝑥) − (sin𝑥) 

𝑑

𝑑𝑥
(cos𝑥)

cos2 𝑥
         (by the quotient rule) 

        =
cos2 𝑥 + sin2 𝑥 

cos2 𝑥
=

1

cos2 𝑥
= sec2 𝑥    (by basic trig identities).   

The power rule tells us that to take a power function’s derivative, we simply reduce its power by 1, 

and multiply by the old power. (That is, (𝑥𝑛)′ = 𝑛𝑥𝑛−1.) So far, we’ve only proved that this holds when 

the power is a positive integer. With the quotient rule’s help, we can show that it holds for all integers. 

Example 2. Prove that the power rule holds for all integer powers. 

Solution. We’ve already established this for positive integers, and it obviously holds when the 

power is zero. (Be sure you see why.) To finish the proof, let us suppose −𝑚 is a negative integer. 

Then 𝑚 is a positive integer, so the derivative of 𝑥𝑚 is 𝑚𝑥𝑚−1. Bearing this in mind, we find that 

𝑑

𝑑𝑥
(𝑥−𝑚) =

𝑑

𝑑𝑥
(
1

𝑥𝑚
) =

𝑥𝑚
𝑑

𝑑𝑥
(1) − 1

𝑑

𝑑𝑥
(𝑥𝑚)

𝑥2𝑚
=
−𝑚𝑥𝑚−1

𝑥2𝑚
= −𝑚𝑥−𝑚−1, 

which shows that the power rule holds even when the power is a negative integer.  

Quotient Rule. If 𝑢 and 𝑣 are functions of 𝑥, then   

𝒅

𝒅𝒙
(
𝒖

𝒗
) =

𝒗 
𝒅𝒖

𝒅𝒙
 − 𝒖 

𝒅𝒗

𝒅𝒙

𝒗𝟐
. 
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Many problems require us to combine different derivative rules. This is easy enough if you write out the 

intermediate steps. 

Example 3. Find the derivative of 𝑦 =
𝑥2 sin𝑥

1 + 𝑥2
. 

Solution.  
𝑑𝑦

𝑑𝑥
=
(1 + 𝑥2)

𝑑

𝑑𝑥
(𝑥2 sin𝑥) − (𝑥2 sin𝑥)

𝑑

𝑑𝑥
(𝑥2) 

(1 + 𝑥2)2
         (quotient rule) 

    =
(1 + 𝑥2)(2𝑥 sin𝑥 + 𝑥2 cos𝑥) − 2𝑥3 sin𝑥  

(1 + 𝑥2)2
       (product rule).     

So much for the quotient rule. 

 

Exercises. 

16. Expressed in prime notation, the quotient rule states that (
𝑓(𝑥)

𝑔(𝑥)
)
′

= … what? 

17. In example 1, we proved that (tan 𝑥)′ = sec2 𝑥. To complete our list of trig functions’ derivatives, prove that  

a) (sec 𝑥)′ = sec 𝑥 tan 𝑥.  b) (csc 𝑥)′ = −csc 𝑥 cot 𝑥. c) (cot 𝑥)′ = −csc2 𝑥. 

18. Now that you’ve found the derivatives of all six trigonometric functions, memorize them. There are patterns 

(particularly among cofunction pairs) that will make this easier if you notice them. Notice them.  

19. Find the derivatives of the following functions (simplifying your answers when possible.) 

a) 𝑦 =
2

1 − 𝑥
          b) 𝑦 =

3𝑥3

cos𝑥
          c) 𝑦 =

𝑥 + 𝜋2

tan𝑥
          d) 𝑦 =

𝑥2

3𝑥 + 5
          e) 𝑦 =

4𝑥 sin𝑥

2𝑥 + cos𝑥
          f) 𝑦 =

𝑥2 sin𝑥

𝑥 sec𝑥
 

g) 𝑦 =
1

𝑥
(sec 𝑥 + tan 𝑥) + ln 2       h) 𝑦 = 𝑥−2 − 𝑥−3 + 𝑥−4 − 𝑥−5  

20. In Example 2, we showed that the power rule holds for all integer exponents. In this exercise, you’ll prove that 

the power rule holds for all rational exponents. This will require several steps. 

a) First, you’ll establish the case where the exponent is a “unit fraction” (i.e. of the form 1/𝑛 for an integer 𝑛).  

If 𝑦 = 𝑥1/𝑛, you can find 𝑑𝑦/𝑑𝑥 with a diabolical trick: find 𝑑𝑥/𝑑𝑦 instead and then take its reciprocal! 

Your problem: Do this. 

[Hint: Begin by expressing 𝑥 as a function of 𝑦. Then compute 𝑑𝑥/𝑑𝑦, take its reciprocal, and rewrite it in terms 

of 𝑥. After a little algebra, you should be able to establish that 𝑑𝑦 𝑑𝑥⁄ = (1 𝑛⁄ )𝑥(1/𝑛)−1, as claimed.] 

b) Next, having handled the case of a unit fraction exponent, we’ll tackle the general rational exponent 𝑚/𝑛. The 

key is to rewrite 𝑦 = 𝑥𝑚/𝑛 as the composition of simpler functions whose derivatives we already know. 

Namely, we can write 𝑦 = 𝑢𝑚, where 𝑢 = 𝑥1/𝑛. 

Use the trick from exercise 7 (and some algebra) to prove that 𝑑𝑦 𝑑𝑥⁄ = (𝑚/𝑛)𝑥(𝑚/𝑛)−1. 

21. Explain how it follows from the previous exercise that 
𝑑

𝑑𝑥
(√𝑥) =

1

2√𝑥
 . 

22. Derivatives of square roots occur often enough to warrant memorizing the formula in the previous exercise. 

Doing so means that you won’t have to rewrite square roots in terms of exponents and apply the power rule 

each time you need a square root’s derivative. After committing this useful formula to memory, find the 

derivatives of the following functions. (Express your final answers without fractional exponents.) 

 a) 𝑦 = √𝑥 sin 𝑥             b) 𝑦 = √9𝑥 + √𝑥             c) 𝑦 =
√𝑥

tan 𝑥
             d) 𝑦 = 3√𝑥5

3
             e) 𝑦 = csc(√𝑥) 

23. On the graph of 𝑦 = sin 𝑥, consider two tangent lines: one where 𝑥 = 0, and another where 𝑥 = 𝜋/6. 

At which point do these two lines cross? 
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Derivatives of Exponential Functions  

Our quest for the derivative of the exponential function 𝑏𝑥 (for any base 𝑏) begins algebraically: 

𝑑(𝑏𝑥)

𝑑𝑥
=
𝑏𝑥 + 𝑑𝑥 − 𝑏𝑥

𝑑𝑥
=
𝑏𝑥𝑏𝑑𝑥 − 𝑏𝑥

𝑑𝑥
= (

𝑏𝑑𝑥 − 1

𝑑𝑥
) 𝑏𝑥. 

The expression in parentheses is, as the figure shows, the slope of 𝑏𝑥 

at (0,1). Consequently, we can rewrite the preceding equation as 

    
𝑑(𝑏𝑥)

𝑑𝑥
= (

The slope of 𝑏𝑥

 at point (0,1)
) 𝑏𝑥.*             

As the next figure demonstrates, increasing the base 𝑏 increases 

the slope. Moreover, some base (between 1.1 and 4) will make the 

slope at (0,1) equal to 1 exactly. We call this special base 𝒆. This 

endows the function 𝑒𝑥 with a truly remarkable property:   

𝑑

𝑑𝑥
(𝑒𝑥) = (1)𝑒𝑥 = 𝑒𝑥. 

That is, the function 𝑒𝑥 is its own derivative. 

No doubt you are wondering if this is the same 𝑒 you’ve met before as the natural logarithm’s base. 

It is. In precalculus, 𝑒 is enigmatic. In calculus, 𝑒 arises naturally, since, by its very definition, it is the base 

of the one exponential function equal to its own derivative.† Perhaps 𝑒 should not be introduced in 

precalculus classes at all; grasping 𝑒’s significance before knowing what a derivative is may be as hopeless 

as understanding 𝜋’s significance before knowing what a circle is. 

Now that we know the derivative of 𝑒𝑥, we can find the derivative of 𝑏𝑥 for any base 𝑏. We begin by 

using logarithmic properties to convert an arbitrary-based exponential function to one with base 𝑒. 

𝑏𝑥 = (𝑒ln 𝑏)
𝑥
= 𝑒(ln𝑏)𝑥. 

Next, we’ll use a trick that you’ve already used in several exercises (see exercises 7, 20b, and 22e). 

Namely, we shall rewrite 𝑏𝑥 as a composition of simpler functions whose derivatives we already know. 

𝑏𝑥 = 𝑒𝑢,   where   𝑢 = (ln 𝑏)𝑥. 

This allows us to compute the derivative we seek:   

𝑑(𝑏𝑥)

𝑑𝑥
=
𝑑(𝑏𝑥)

𝑑𝑢

𝑑𝑢

𝑑𝑥
= (𝑒𝑢)(ln 𝑏) = (ln 𝑏)𝑒(ln𝑏)𝑥 = (ln 𝑏)(𝑒(ln𝑏))

𝑥
= (𝐥𝐧𝒃)𝒃𝒙. 

 
* For example, at (0,1), the graph of 𝑦 = 2𝑥 has a slope of approximately 0.7, so it follows that 

𝑑

𝑑𝑥
(2𝑥) ≈ 0.7(2𝑥). 

† Stated with a bit more care, we can define 𝑒 is the base of the only function of the form 𝒃𝒙 that is equal to its own derivative. 
It is reasonable to ask if there any other functions (of another form) that equal their own derivatives. It turns out that 𝑒𝑥  is 
essentially unique in this regard; the only other such functions that have this property are constant multiples of 𝑒𝑥.  
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We have thus established the following results: 

 

 

 

 

 

 

 

We saw earlier (in exercise 4) that we use radians precisely because they simplify sine’s derivative; 

if calculus didn’t exist, neither would radians. Similarly, we use 𝑒 as a base for exponential functions and 

logarithms because it simplifies their derivatives. If calculus did not exist, no one would bother with 𝑒. 

Calculus forces strange things up from the depths. 

When exponential functions are present, their inverses – logarithms – are never far away. Once we 

know a function’s derivative, we can find its inverse’s derivative (by using the trick from exercise 20a). I’ll 

use that trick here to find the natural logarithm’s derivative. (And you’ll use the trick in the exercises to 

find the derivatives of the base-10 logarithm and the inverse trigonometric functions.) 

Problem. Find the derivative of 𝑦 = ln 𝑥. 

Solution. Since  𝑦 = ln 𝑥  implies  𝑥 = 𝑒𝑦, we have  
𝑑𝑥

𝑑𝑦
= 𝑒𝑦.  Thus,  

𝑑𝑦

𝑑𝑥
=

1

𝑒𝑦
=

1

𝑒ln𝑥
=
1

𝑥
 .    

The natural logarithm’s derivative is important. Commit it to memory. 

 

 

Exercises. 

24. Find the following functions’ derivatives. 

a) 𝑦 = 𝑒𝑥 sin 𝑥            b) 𝑦 =
ln 𝑥

3 tan𝑥
            c) 𝑦 = −2𝑥 cos 𝑥 + 3𝑥2 ln 𝑥            d) 𝑓(𝑥) = 𝑒𝑥√𝑥 + 𝑒2 

e) 𝑔(𝑥) = 2𝑥3𝑥4𝑥5𝑥+1  [Hint: Some preliminary algebra will help.]           f) 𝑦 = csc 𝑥 sin 𝑥 −
ln 𝑒𝑥

𝑥
 

g) 𝑤 = √𝑡5
3

sec 𝑡 +
1

𝑡
             h) 𝑉 =

1

𝑦
+ ln 𝑦             i) 𝑘(𝑥) =

2𝑥 cos2 𝑥  + 2𝑥 sin2 𝑥

√𝑥
             j)  𝑦 = 𝑥𝑒/𝑒𝑥 

25. Does the graph of 𝑦 = 2𝑥 − 𝑥 have a horizontal tangent at any point? If so, find that point’s 𝑥-coordinate. 

26. Find the derivative of 𝑦 = log10 𝑥 by adapting the trick we used to establish the natural logarithm’s derivative. 

27. The same trick can be used to find the derivative of 𝑦 = sin−1 𝑥, but a trigonometric twist complicates the end. 

a) If you solved the previous problem, you’ll find it easy to show that 𝑑𝑦 𝑑𝑥⁄ =  1/ cos(sin−1 𝑥).  Do so. 

b) We can simplify the ghastly expression cos(sin−1 𝑥) with a trigonometric identity. To derive it, first explain 

why cos(sin−1 𝑥) = ±√1 − sin2(sin−1 𝑥). Then simplify this and explain why the ± must in fact be a plus. 

[Hint for the ± business: Think about the range of inverse sine, and what cosine does to values in that range.] 

c) Conclude that 
𝑑

𝑑𝑥
(sin−1 𝑥) =

1

√1 − 𝑥2
 .  

28. By shadowing the argument we used in the previous exercise, show that 
𝑑

𝑑𝑥
(cos−1 𝑥) =

−1

√1 − 𝑥2
 . 

29. Finally, show that 
𝑑

𝑑𝑥
(tan−1 𝑥) =

1

1 + 𝑥2
.   [Hint: Use the alternate Pythagorean identity,  sec2 𝑥 = 1 + tan2 𝑥.] 

Derivatives of Exponential Functions.  

𝑑

𝑑𝑥
(𝑒𝑥) = 𝑒𝑥.    

More generally, for any positive base 𝑏, 

𝑑

𝑑𝑥
(𝑏𝑥) = (ln 𝑏)𝑏𝑥. 

𝑑

𝑑𝑥
(ln 𝑥) =

1

𝑥
 . 
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30. In this problem, you’ll learn how to approximate the numerical value of 𝑒. 

a) Explain how 𝑒’s definition implies that (𝑒𝑑𝑥 − 1) 𝑑𝑥⁄ = 1, which, in turn, implies that 𝑒 = (1 + 𝑑𝑥)1 𝑑𝑥⁄ . 

[Hint: Express the slope of the graph of 𝑦 = 𝑒𝑥  at (0,1) two different ways. Equate the results.] 

b) The formula for 𝑒 in part (a) is approximately true if we replace the infinitesimal 𝑑𝑥 by a small real value ∆𝑥. 

The smaller the value of ∆𝑥, the better the approximation. Using a calculator, substitute small values of ∆𝑥 

into the approximation 𝑒 ≈ (1 + ∆𝑥)1/∆𝑥, and convince yourself that 𝑒 ≈ 2.71828. 

c) One way to make ∆𝑥 small is to let ∆𝑥 = 1/𝑛, where 𝑛 is a large whole number. If we make this substitution, 

then we can reformulate the approximation in the previous part as follows: 𝑒 ≈ (1 + 1/𝑛)𝑛, where 𝑛 is a 

large whole number; the larger 𝑛 is, the better the approximation. Using a calculator, substitute some large 

values of 𝑛 into this approximation to confirm what you discovered in part (b). 

31. In #27, some clever algebraic shenanigans led you to inverse sine’s derivative. 

Since inverse sine, however, is an essentially geometric function, geometrically-

minded souls will find the following geometric derivation more illuminating.  

a) Defining 𝑥 as in the figure, explain why the angle marked sin−1 𝑥 has been  

marked appropriately. 

b) Increasing 𝑥 by an infinitesimal amount 𝑑𝑥 induces an infinitesimal change in 

sin−1 𝑥. Locate 𝑑(sin−1 𝑥) on the figure.   

c) One leg of the figure’s infinitesimal triangle is in fact an arc. Find its length.  

d) Explain why the two right triangles emphasized in the figure are similar. 

e) Use this similarity to show that 𝑑(sin−1 𝑥) 𝑑𝑥⁄ = 1 √1 − 𝑥2⁄  . 

32. In light of the previous problem, it should come as no surprise that the other inverse 

trigonometric functions’ derivatives can be justified geometrically. In this problem, 

you’ll carry this out for inverse tangent. 

a) Explain why the angle marked tan−1 𝑥 has been appropriately marked. 

b) Locate 𝑑(tan−1 𝑥) on the figure. 

c) Use the Pythagorean theorem to find the large right triangle’s hypotenuse.  

d) One leg of the figure’s infinitesimal triangle is in fact an arc. Find its length. 

e) Explain why the two right triangles emphasized in the figure are similar. 

f) Use this similarity to show that  

𝑑(tan−1 𝑥)

𝑑𝑥
=

1

1 + 𝑥2
 . 

33. The geometric derivation of inverse cosine’s derivative require a bit more care: 

One must avoid traffic jams in the figure while keeping a watchful eye on negatives. 

Apart from that, though, it is business as usual. 

a) Defining 𝑥 as in the figure, locate cos−1 𝑥. 

b) Observe that increasing 𝑥 by an infinitesimal amount 𝑑𝑥 induces an infinitesimal 

decrease in cos−1 𝑥, so 𝑑(cos−1 𝑥) is negative. Locate the quantity −𝑑(cos−1 𝑥), 

which is positive, on the figure. 

c) Complete the argument. 
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The Chain Rule 
“He hath hedged me about, that I cannot get out: he hath made my chain heavy.” 

 - Lamentations 3:7 

You have already met the chain rule, for I smuggled it – incognito – into some earlier exercises (7, 20b). 

The rule is really nothing but the trivial observation that we can factor 𝑑𝑦/𝑑𝑥 as follows: 

𝑑𝑦

𝑑𝑥
=
𝑑𝑦

𝑑𝑢
∙
𝑑𝑢

𝑑𝑥
 . 

To find derivatives of composite functions (i.e. functions of functions, such as 𝑦 = sin(ln 𝑥)), we just call 

the composite’s “inner function” 𝑢, then grind out the two derivatives on the right-hand side above. Note 

that the first factor, 𝑑𝑦/𝑑𝑢, will be a function of 𝑢, so after computing it, we must rewrite it in terms of 

𝑥, which is a simple matter of substituting the inner function itself for 𝑢 wherever it appears. 

Example 1. Find the derivative of 𝑦 = sin(ln 𝑥). 

Solution. If we rewrite this function as 𝑦 = sin 𝑢, where 𝑢 = ln 𝑥, the chain rule gives  

𝑑𝑦

𝑑𝑥
=
𝑑𝑦

𝑑𝑢
∙
𝑑𝑢

𝑑𝑥
= cos𝑢 (

1

𝑥
) =

cos(ln𝑥)

𝑥
 .         

Note that in our final expression, we’ve eliminated all traces of 𝑢. 

Example 2. Find the derivative of 𝑦 = (3𝑥2 − 1)10. 

Solution. If we rewrite this as  𝑦 = 𝑢10, where 𝑢 = 3𝑥2 − 1, the chain rule yields  

𝑑𝑦

𝑑𝑥
=
𝑑𝑦

𝑑𝑢
∙
𝑑𝑢

𝑑𝑥
= 10𝑢9(6𝑥) = 60𝑥(3𝑥2 − 1)9.        

We can speed up the chain rule procedure (and make it independent of Leibniz notation) by restating it 

in words. To do so, we first note that 𝑑𝑦/𝑑𝑢 and 𝑑𝑢/𝑑𝑥 are the derivatives of the composite’s outer and 

inner functions, respectively. We can now state the “fast version” of the chain rule: Take the outer 

function’s derivative, evaluate it at the inner function, then multiply by the inner function’s derivative. 

(The italicized step corresponds to eliminating 𝑢 from the final expression.)  

Here’s an example of the fast version in action. 

Example 3. Find the derivative of 𝑦 = tan(2𝑥3 + 3𝑥2 + 𝑥 + 1). 

Solution. By the chain rule, 
𝑑𝑦

𝑑𝑥
= (sec2(2𝑥3 + 3𝑥2 + 𝑥 + 1))⏟                  

𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑢𝑡𝑒𝑟
𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑖𝑛𝑛𝑒𝑟.

(6𝑥2 + 6𝑥 + 1)⏟          
𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒
 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑛𝑒𝑟

      

This fast version of the chain rule is especially useful when the chain rule must be combined with the 

product rule, the quotient rule, or even a second instance of the chain rule. 

Example 4. Find the derivative of 𝑦 =  √3𝑥2 sin 𝑥. 

Solution.    
𝑑𝑦

𝑑𝑥
=

1

2√3𝑥2 sin𝑥
∙
𝑑

𝑑𝑥
(3𝑥2 sin 𝑥)                    (chain rule) 

     =
1

2√3𝑥2 sin𝑥
[6𝑥 sin𝑥 + 3𝑥2 cos 𝑥]       (product rule)     
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For our grand finale, a fourfold composition of functions. It looks more complicated, but isn’t really; we 

just follow the chain of derivatives, link by link, from the outermost to the innermost function. 

Example 5. Find the derivative of 𝑦 = sin(tan(ln(2𝑥 + 2))). 

Solution.    
𝑑𝑦

𝑑𝑥
= cos( tan(ln(2𝑥 + 2)))

𝑑

𝑑𝑥
(tan(ln(2𝑥 + 2)))    (chain rule) 

     = cos( tan(ln(2𝑥 + 2))) (sec2(ln(2𝑥 + 2))
𝑑

𝑑𝑥
(ln(2𝑥 + 2))   (chain rule) 

     = cos( tan(ln(2𝑥 + 2))) (sec2(ln(2𝑥 + 2)) (
1

2𝑥 + 2
)
𝑑

𝑑𝑥
(2𝑥 + 2)  (chain rule) 

     = cos( tan(ln(2𝑥 + 2))) (sec2(ln(2𝑥 + 2)) (
1

𝑥 + 1
).        

 

Mastering the chain rule requires practice. Behold your opportunity to obtain it:  

 

 

Exercises. 

34. Express the chain rule in prime notation. 

35. Find the derivatives of the following functions. 

a) 𝑦 = 𝑒5𝑥  b) 𝑦 = cos(3𝑥2) + 1  c) 𝑦 = ln(ln 𝑥)        d) 𝑦 = (2𝑥3 − 𝑥)8            e) 𝑦 = 2tan 𝑥  

f)  𝑦 =
1

(3𝑥 − 4)2
 g) 𝑦 = 𝑥√144 − 𝑥2  h) 𝑦 = 𝑒−𝑥

2
         i) 𝑦 = √𝑥 + 𝑥3

3
        j) 𝑦 = cos2 𝑥 

k) 𝑦 = (1 − 4𝑥3)−2  l) 𝑦 = cos(csc(1/𝑥))  m) 𝑦 = 𝑒sin
2 𝑥         n) 𝑦 = ln(sin(ln 𝑥))       o) 𝑦 =

𝑒sin𝑥

√sec𝑥
 

p) 𝑦 = ln (
𝑥2 + 4

2𝑥 + 3
) q) 𝑦 = 10−𝑥/(1 + 𝑥

2) + 2𝜋     r) 𝑦 = 5𝑥2𝑒6𝑥
2+𝑒      s) 𝑦 = ln(√6𝑥2 + 3𝑥

3
)      t) 𝑦 = 𝑒𝜋

2
 

36. The 27th-degree polynomial 𝑦 = (2𝑥3 − 𝑥2 + 𝑥 + 1)9 crosses the 𝑦-axis at some point. Consider the tangent to 

the polynomial’s graph at this point. Find the point at which this tangent line crosses the 𝑥-axis. 

37. Does the graph of 𝑦 = ln(sin(ln 𝑥)) have a horizontal tangent line at any of its points? If so, at how many points? 

Find the exact coordinates of one such point.  

38. Let sin<𝑛>(𝑥) denote 𝑛 nested sine functions, so that, for example, sin<3>(𝑥) = sin(sin(sin 𝑥)). 

a) Where does the graph of 𝑦 = sin<2>(𝑥) cross the 𝑥-axis? 

b) What is the range of 𝑦 = sin<2>(𝑥)? State it exactly, then use a calculator to approximate its endpoints. 

c) What is the slope of 𝑦 = sin<2>(𝑥) at the origin? At other points where the graph crosses the 𝑥-axis?  

d) Repeat the first three parts of this problem, but with 𝑦 = sin<3>(𝑥). 

e) Graph 𝑦 = sin<2>(𝑥) and  𝑦 = sin<3>(𝑥) as best you can. Then try to guess what happens to the graphs of 

the functions 𝑦 = sin<𝑛>(𝑥) for larger and larger values of 𝑛. 
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Integrals: Intuition and Notation 
“We could, of course, use any notation we want; do not laugh at notations; invent them, they are powerful. 

In fact, mathematics is, to a large extent, the invention of better notations.” 

 - Richard Feynman, Lectures on Physics, Chapter 17, Section 5. 

In principle, finding the area of a polygon (a figure with straight boundaries) is easy: We just chop it into 

triangles, find their areas, and add them up. What could be simpler? Even the village idiot knows the 

formula for a triangle’s area, and many a bright twelve year old can explain why it holds, too.*  

Finding the area of a region with a curved boundary is trickier, since we 

can’t chop it into a finite number of “nice” pieces. (Here, “nice” just means 

having a shape whose area we can find.) We can, however, chop it into 

infinitely many nice pieces by making each piece infinitesimally thin. For 

example, we can (mentally) chop the shaded region at right into infinitely 

many infinitesimally thin rectangles, as the schematic figure below suggests. 

(Naturally, you must imagine infinitely many rectangles there, not just the twenty I have actually drawn.) 

If we can somehow find these rectangles’ areas and sum them up, we will have the region’s area. 

This idea sounds promising in theory, but can we sum infinitely many infinitesimal areas in practice? 

Thanks to the magic of integral calculus, the answer is yes. The magic’s deep source, which you will soon 

behold, is a result called The Fundamental Theorem of Calculus. But before you can understand the 

Fundamental Theorem, you must, as any adept of the dark arts will appreciate, be initiated into the 

integral calculus’s symbolic mysteries. 

Consider a typical infinitesimal rectangle standing at a 

typical point, 𝑥. Since its height is 𝑓(𝑥) and its width is 𝑑𝑥 

(an infinitesimal bit of 𝑥), the rectangle’s area is 𝑓(𝑥)𝑑𝑥. 

The whole region’s area is an infinite sum of these 𝑓(𝑥)𝑑𝑥’s: 

one for each possible position of 𝑥 from 𝑎 to 𝑏. To indicate 

an infinite sum of this sort, we use Leibniz’s elegant integral 

symbol, ∫, which he intended to suggest a stretched out “S” 

(for “Sum”). Using this notation, we express the whole 

region’s area as follows: 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

. 

The values 𝑎 and 𝑏 near the top and bottom of the integral sign are the boundaries of integration, the 

values of 𝑥 at which we start and stop summing up the 𝑓(𝑥)𝑑𝑥’s. 

Half the task of learning integral calculus is developing an intuitive feel for this notation and learning 

to think in terms of infinite sums of infinitesimals. The subject’s other half is about evaluating integrals – 

determining their actual numerical values. To evaluate an integral, we’ll need a single beautiful theorem 

(The Fundamental Theorem of Calculus) plus various technical tricks by means of which we’ll lure 

recalcitrant integrals into the Fundamental Theorem’s sphere of influence. 

 
* If, being older than twelve, you need a reminder, see exercise 1. 
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Example 1. Express the area of the shaded region in the figure as an integral. 

Solution. We begin by thinking of the region as an infinite 

collection of infinitesimally thin rectangles. A typical rectangle 

(at a typical point 𝑥, as highlighted in the figure) has height 𝑥2/3 

and width 𝑑𝑥, so its area is (𝑥2 3⁄ )𝑑𝑥. 

Hence, the integral 

 ∫
𝑥2

3

2

0

𝑑𝑥. 

represents the shaded region’s entire area.      

Once you’ve learned the Fundamental Theorem of Calculus, you’ll be able to evaluate such integrals. But 

first, let’s get comfortable interpreting and using integral notation. In the following examples, the goal is 

to understand why the integrals that eventually appear represent the quantities I claim they represent.  

Example 2. Suppose that 𝑡 hours after noon, a car’s speed is 𝑠(𝑡) miles per hour. Express the 

distance that it travels between 2: 00 and 4: 00 pm as an integral. 

Solution. For an object moving at constant speed, we know that 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒.* 

Of course, during a typical two-hour drive, the car’s speed is not constant; it can change wildly even 

within a single minute. Within a second, however, the car’s speed can change only a bit. Within a 

tenth of a second, it can change still less, and within a hundredth of a second, its speed is nearly 

constant. As true calculus masters, we push this trend to extremes, recognizing that within any 

given instant (i.e. over an infinitesimal period of time), the car’s speed actually is constant. 

We’ll now apply this crucial insight. At any time 𝑡, the car’s speed is 𝑠(𝑡) and remains so for the 

next instant, so during that instant (whose duration we’ll call 𝑑𝑡), the car travels 𝒔(𝒕)𝒅𝒕 miles.  

The distance that the car travels between 2: 00 and 4: 00 is the sum of the distances it travels 

during the (infinitely many) instants between those times – the sum, that is, of all of the 𝒔(𝒕)𝒅𝒕’s 

for all values of 𝑡 between 2 and 4. Hence, the integral  

∫ 𝑠(𝑡)
4

2

𝑑𝑡. 

represents the total distance (in miles) that the car travels between 2: 00 and 4: 00 pm.        

Such is the spirit of integral calculus: We mentally shatter a function (whose values are globally variable) 

into infinitely many pieces, each of which is locally constant on an infinitesimal part of the function’s 

domain. These constant bits are easy to analyze; having analyzed a typical one, we sum up the results with 

an integral, which the Fundamental Theorem will soon let us evaluate. 

The overall process is thus one of disintegration (into infinitesimals) followed by reintegration 

(summing up the infinitesimals) so as to reconstitute the original whole in a profoundly new form.  

 

 
* E.g. A car driving at a constant speed of 60 mph for 2 hours would cover 120 miles. 
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Example 3. In physics, the work needed to raise an object of weight 𝑊 

through a distance 𝐷 (against the force of gravity) is defined to be 𝑊𝐷. 

Suppose that a topless cylindrical tank, 5 feet high, with a base radius of 

2 feet, is entirely full of calculus students’ tears. Find an expression for 

the work required to pump all the salty liquid over the tank’s top. (The 

density of the tears, by the by, is 64 pounds per cubic foot.)  

Solution. Different parts of the liquid must be raised different distances. This seems to complicate 

our work (pun intended), but if we simply observe that all the liquid at the same height must be 

raised the same distance, an integral will save us. We simply don our calculus glasses and view the 

cylinder as a stack of infinitesimally thin cylindrical slabs (as though it were a roll of infinitely many 

infinitesimally thin coins). A typical slab at height 𝑥 must be lifted through a distance of 5 − 𝑥 feet. 

Since its weight is 256𝜋𝑑𝑥 lbs (64 times its volume of 𝜋(22)𝑑𝑥 = 4𝜋𝑑𝑥 cubic feet), the work 

needed to lift it to the tank’s rim is (𝟓 − 𝒙)𝟐𝟓𝟔𝝅𝒅𝒙 foot-lbs. 

To find the total amount of work required to remove all the slabs, we simply add up these 

(5 − 𝑥)256𝜋𝑑𝑥’s as 𝑥 runs from 0 (the tank’s bottom) to 5 (the tank’s top). Thus,  

∫ (5 − 𝑥)256𝜋
5

0

𝑑𝑥. 

is the total amount of work (in foot-lbs.) required to lift all the tears over the rim.    

Exercises.   

1. Everyone knows that a rectangle with base 𝑏 and height ℎ has area 𝑏ℎ.  

Less well-known is that a parallelogram with base 𝑏 and height ℎ also has area 𝑏ℎ.* 

(Proof:  In the figure at right, we cut a triangle away from a parallelogram and reattach it to the opposite side, 

turning the parallelogram into a rectangle. Since area was 

neither created nor destroyed during the operation, the original 

parallelogram’s area must equal that of the rectangle, which is, 

of course, 𝑏ℎ.)  

Your problem: Explain why every triangle’s area is half the product of its base and height. [Hint: We established 

the parallelogram’s area formula by relating the parallelogram to a shape whose area we already knew. Use the 

same trick to establish the area formula for a triangle.] 

2. Express the following areas as integrals. In each case, sketch a typical infinitesimal rectangle. 

a)   b)                 c)  

 

 

 

 

 

 
* A parallelogram’s “height” is the distance between its parallel bases, not the length of its sloped sides. 
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3. Suppose the velocity of a particle moving along a straight line is, after 𝑡 

seconds, 𝑣(𝑡) meters per second. 

a) Based on the graph at right, does the particle ever reverse its direction? 

b) Can the total distance traveled by the particle between 𝑡 = 4 and 𝑡 = 8 

seconds be expressed as an integral? If not, why not? If so, write down 

the integral that does the job, and explain why it represents this distance. 

c) Observe that the integral you’ve produced also represents the area of the 

region that lies below the curve, above the 𝑥-axis, and between the 

vertical lines 𝑡 = 4 and 𝑡 = 8. The strange moral of this story: An area can 

sometimes represent a distance. 

4.  Draw the graph of 𝑦 = √𝑥 restricted to 0 ≤ 𝑥 ≤ 3. Look at your drawing and 

imagine revolving the graph around the 𝑥-axis. This will generate the three-

dimensional “solid of revolution” shown at right. We can express its volume as 

an integral as follows. First, imagining the figure as solid, we mentally chop it 

up into infinitely many infinitesimally thin slices as though it were a loaf of 

bread. A schematic representation of one such slice is shown in the figure. 

a) Explain why the solid’s cross-sections will be circles. 

b) The radii of these circles can vary from 0 to √3, depending on the point at 

which we take our slice. The closer the two circular cross-sections are to one 

another in space, the closer the lengths of their radii will be. When two circular cross-sections are 

infinitesimally close to one another, then their radii are effectively equal. Consequently, we can conceive of a 

typical infinitesimally thin slice as being an infinitesimally thin cylinder. This is excellent news because we know 

how to find a cylinder’s volume: We multiply the area of its circular base by its height. In the specific example 

at hand, convince yourself that a typical slice of our solid (taken at a variable point 𝑥) is a cylinder whose 

circular base has radius √𝑥  and whose height is 𝑑𝑥 (the slice’s infinitesimal thickness). Then write down an 

expression for the volume of a typical slice at 𝑥. 

c) Use your result from the previous part to express the volume of the entire solid as an integral. 

d) If we revolve one arch of the sine wave around the 𝑥-axis, find an integral that represents the volume of the 

resulting solid. Draw pictures and let them guide you to the integral. 

e) If we revolve half an arch of the sine wave (from 0 to 𝜋/2) around the 𝒚-axis, draw a picture of the resulting 

solid, and write down an integral that represents its volume. 

5. Express the shaded areas as integrals. [Hint: The usual story. Disintegrate each area into infinitesimally thin 

rectangular slices, find an expression for the area of a typical slice, then integrate.] 

a)        b)  
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Positives and Negatives 
“Natural selection can act only by the preservation and accumulation of infinitesimally small inherited modifications...” 

 - Charles Darwin, On The Origin of Species, Chapter IV. 

Integrals always have the form ∫ 𝑓(𝑥)𝑑𝑥.
𝑏

𝑎
 To interpret an integral, it sometimes helps to imagine an 

obscure mythological creature, the Integration Demon, who traverses the number line from 𝑎 to 𝑏, pen 

and ledger in hand; at each real number in that interval, he evaluates 𝑓 and multiplies the result by 𝑑𝑥, 

yielding 𝑓(𝑥)𝑑𝑥. His diabolical task is not just to find all the individual 𝑓(𝑥)𝑑𝑥’s, but to add them all up. 

Their grand total is the integral’s value. 

When we integrate in the usual direction (left to right on the number line), 𝑑𝑥 is always a positive 

infinitesimal change in 𝑥.* Thus, for any 𝑥 at which 𝑓(𝑥) happens to be negative, 𝑓(𝑥)𝑑𝑥 is negative too. 

Naturally, a negative 𝑓(𝑥)𝑑𝑥 goes, so to speak, into the debit column of the integration demon’s ledger. 

If, at the end of the day, the debits outweigh the credits, then the integral’s value will be negative. 

Example 1. In the figure, it’s easy to see that 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 6. 

But what about the integral of 𝑓 from 𝑏 to 𝑐? 

Between 𝑏 to 𝑐, each 𝑓(𝑥)𝑑𝑥 will be negative 

since 𝑓(𝑥) < 0 throughout that entire interval. 

Although the negative 𝑓(𝑥)𝑑𝑥’s obviously can’t 

represent areas (which are necessarily positive), 

they are still related to areas in a simple way. 

Consider the infinitesimal rectangle shown at 𝑥∗. Its height is −𝑓(𝑥∗), so its area is −𝑓(𝑥∗)𝑑𝑥. 

This means that 𝑓(𝑥∗)𝑑𝑥 must be the negative of that rectangle’s area. Accordingly, as the 

integration demon goes from 𝑏 to 𝑐, he’ll be summing up not the areas of infinitesimal rectangles, 

but rather the negatives of their areas. Since these rectangles fill a region whose total area is 3, the 

demon’s grand sum of all the 𝑓(𝑥)𝑑𝑥’s between 𝑏 to 𝑐 must therefore be −3. That is, 

∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑏
= −3. 

Next, suppose we wish to integrate from 𝑎 to 𝑐. This integral’s value is obvious if we think of 

the integration demon and his ledger. As he proceeds from 𝑎 to 𝑏, he adds up lots of 𝑓(𝑥)𝑑𝑥’s; 

their sum is 6 (the area of the figure’s first shaded region). As he travels from 𝑏 to 𝑐, he tallies up 

still more 𝑓(𝑥)𝑑𝑥’s. Their sum, as discussed above, is −3, which brings his grand total down from 

6 to 3. Consequently, 

∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑎
= 3.               

Please be certain that you understand the ideas that justify the preceding example’s conclusions. If you 

do, then read on. If not, then go back, reread and think about them until you do understand.  

 
* One can integrate “backwards” (i.e. right to left on the number line), but in practice, one doesn’t. Should sheer perversity 

drive someone to do so, then his 𝑑𝑥’s would be negative infinitesimal changes. More on this in exercise 27. 
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Negative 𝑓(𝑥)𝑑𝑥’s in an integral are perfectly acceptable in physical contexts, too, as we’ll now see.  

Example 2. A fly enters a room and buzzes around erratically, greatly irritating everyone therein. 

We’ll concentrate exclusively on the fly’s motion in the up/down dimension. Let 𝑣(𝑡) be the fly’s 

upwards velocity after 𝑡 seconds in the room. (Thus, 𝑣(5) = −2 m/s would signify that 5 seconds 

after entering the room, the fly’s height is decreasing at a speed of 2 meters per second.) 

Over a mere instant (i.e. infinitesimal bit of time), the fly’s velocity is effectively constant. 

Hence, its speed, |𝑣(𝑡)|, is constant during the instant too, which means that during the instant, 

the constant-speed formula 𝑠𝑝𝑒𝑒𝑑 ×  𝑡𝑖𝑚𝑒 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 applies. Thus, |𝑣(𝑡)|𝑑𝑡 represents the 

distance that the fly travels in the instant following time 𝑡. For example, the statement 

∫ |𝑣(𝑡)|𝑑𝑡
60

0

= 10 

tells us that during its first minute in the room, the fly travels a total of 10 vertical meters, 

sometimes going up, sometimes going down.   

Whereas |𝑣(𝑡)|𝑑𝑡 is always positive and represents the distance that the fly travels in a given 

instant, the quantity 𝑣(𝑡)𝑑𝑡 can be negative; it therefore indicates not only the distance travelled 

by the fly in a given instant, but the fly’s direction during that instant as well. Positive 𝑣(𝑡)𝑑𝑡’s 

correspond to altitude gains, while negative 𝑣(𝑡)𝑑𝑡’s correspond to losses. It follows that when we 

sum up all the 𝑣(𝑡)𝑑𝑡’s over some interval of time, we will end up with the fly’s net gain in altitude 

over that time period, which could, of course, be negative. (Such a net change in an object’s position 

is called its displacement.) Consequently, the equation 

∫ 𝑣(𝑡)𝑑𝑡
60

0

= −0.5 

tells us that after sixty seconds of buzzing around (during which, according to the previous integral, 

it travelled a total of ten vertical meters) the fly’s height was half a meter lower than it was when 

it first entered the room.   

After a few exercises, you’ll be ready to begin climbing towards the Fundamental Theorem of Calculus, 

which will allow you to begin evaluating integrals at last.  
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Exercises. 

6. In Example 1 above, explain why ∫ 𝑓(𝑥)𝑑𝑥
𝑑

𝑎
= 5. 

7. The numbers in the figure at right represent areas.  

Evaluate the following integrals. 

a) ∫ 𝑓(𝑥)𝑑𝑥
𝑎

0
             b) ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
             c) ∫ 𝑓(𝑥)𝑑𝑥

𝑏

0
 

d) ∫ 𝑓(𝑥)𝑑𝑥
𝑑

𝑎
             e) ∫ 𝑓(𝑥)𝑑𝑥

𝑑

0
             f) |∫ 𝑓(𝑥)𝑑𝑥

𝑑

0
| 

g) ∫ |𝑓(𝑥)|𝑑𝑥
𝑑

0
    [Hint: Consider the graph of 𝑦 = |𝑓(𝑥)|.     

8. Suppose that after 𝑡 seconds, a particle moving on a horizontal line has velocity 𝑣(𝑡) 

meters per second (where the positive direction is taken to be right). The graph of 

this velocity function is shown in the figure at right. 

Explain the physical significance of each of the following three integrals:  

a) ∫ 𝑣(𝑡)𝑑𝑡
2

0
    b) ∫ 𝑣(𝑡)𝑑𝑡

5

0
   c) ∫ |𝑣(𝑡)|𝑑𝑡

5

0
.   

Now decide whether each of the following are true or false: 

d) ∫ 𝑣(𝑡)𝑑𝑡
2

0
= ∫ |𝑣(𝑡)|𝑑𝑡

2

0
. e) After five seconds, the particle is to the right of its initial position. 

9. Find the numerical values of the following integrals by interpreting them in terms of areas. Draw pictures! 

  a) ∫ 𝑥 𝑑𝑥
1

0
          b) ∫ 2𝑥 𝑑𝑥

2

−1
          c) ∫ √1 − 𝑥2

1

−1
 𝑑𝑥          d) ∫ −√4 − 𝑥2

2

0
 𝑑𝑥          e) ∫ 𝑑𝑥

5

2
  [Hint: 𝑑𝑥 = 1𝑑𝑥.] 

10. a) Write expressions for the areas of each of the three infinitesimally thin 

rectangles depicted in the figure at right. Note: Even though all three 

expressions will turn out essentially the same, each case will require a 

slightly different justification. [Hint: Bear in mind that while the values 

of functions may be negative, lengths are always positive.] 

b) In the figure at right, consider the region that lies below 𝑦 = 𝑓(𝑥), above 

𝑦 = 𝑔(𝑥), and between the vertical lines 𝑥 = 𝑎 and 𝑥 = 𝑐. Can this 

region’s area be represented as a single integral? If so, write down the 

integral that does the job. If not, explain why this can’t be done. 

c) Sketch the region between the graphs of 𝑦 = −𝑥 and 𝑦 = 1 − (𝑥 − 1)2 

and express its area as an integral. 

11. We say a function 𝑓 is even if, for each 𝑥 in its domain, 𝑓(−𝑥) = 𝑓(𝑥), and odd if 𝑓(−𝑥) = −𝑓(𝑥) for each 𝑥. 

a) Give some typical examples of even functions and odd functions, including trigonometric examples. 

b) The algebraic definitions of even and odd functions have geometric consequences: The graphs of all even 

functions must exhibit a certain form of symmetry; the graphs of odd functions must exhibit another form. 

Explain the two forms of symmetry, and explain why they follow from the algebraic definitions.  

c) Explain why the following is true: If 𝑓 is even, then for any 𝑎 in its domain, ∫ 𝑓(𝑥)𝑑𝑥
𝑎

−𝑎
= 2∫ 𝑓(𝑥)𝑑𝑥

𝑎

0
. 

d) Explain why the following is true: If 𝑓 is odd, then for any 𝑎 in its domain, ∫ 𝑓(𝑥)𝑑𝑥
𝑎

−𝑎
= 0. 

e) Is the function  𝑓(𝑥) = 𝑥3 sin2 𝑥 − 𝑥 cos  𝑥  even, odd, or neither? 

 f) Integrate: ∫ (𝑥3 sin2 𝑥 − 𝑥 cos  𝑥)
𝜋

−𝜋
𝑑𝑥. 
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Preparation for the FTC: The Antiderivative Lemma 

An antiderivative of a function 𝑓 is a function whose derivative is 𝑓. (One antiderivative of 2𝑥, for 

example, is 𝑥2. Another is 𝑥2 + 1.)  

Suppose we have two different antiderivatives of the same function. 

How different can they be? Well, by definition, their derivatives are equal, 

so their graphs change at equal rates throughout their common domain. 

When the graph of one increases rapidly, so does the graph of the other; 

when the graph of one decreases slowly, so does the graph of the other. 

This perfectly synchronized “dance of the antiderivatives” ensures that the 

distance between their graphs remains constant. (For it to change, the two 

graphs would have to change somewhere at different rates.) 

The moral of the story is the following lemma:* 

Antiderivative Lemma. If 𝑔 and ℎ have the same domain and are antiderivatives of the same 

function, then they differ only by a constant. That is, 𝑔(𝑥) = ℎ(𝑥) + 𝐶 for some constant 𝐶. 

If we know one antiderivative of a function, we know them all: An antiderivative of cos 𝑥 is sin 𝑥; our 

lemma then guarantees that every antiderivative of cosine has the form sin 𝑥 + 𝐶 for some constant 𝐶. 

 

Exercises.   

12. An important rule you should immediately memorize: To find an antiderivative of 𝑐𝑥𝑟, where 𝑐 is a constant, 

we increase its exponent by 1 and divide by the new exponent. 

a) Verify that an antiderivative of 𝑐𝑥𝑟 is 𝑐𝑥𝑟+1 (𝑟 + 1⁄ ), as claimed. 

b) Write down antiderivatives for the following functions:   𝑥3, 2𝑥9, 𝑥, −5√𝑥, √𝑥2
3

,   
1

𝑥2
,   

−8

𝑥3/7
 , 𝑥−𝜋.    

c) State the one value of 𝑟 for which this rule does not apply. Why doesn’t the rule apply in this case? 

13. Think of an antiderivative of each of the following functions: 

a) cos 𝑥        b) −sin 𝑥       c) sin 𝑥       d) sec2 𝑥       e) 𝑒𝑥       f) sec 𝑥 tan 𝑥       g) 
1

1 + 𝑥2
       h)  −csc2 𝑥       i) 1 𝑥⁄  

14. You can sometimes find an antiderivative by guessing something close, then adjusting your guess to make its 

derivative come out right. For example, to find an antiderivative of sin(3𝑥), we’d guess, “It will be something 

like cos(3𝑥). But this function’s derivative is −𝟑 sin(3𝑥), which is off by a constant factor of 3. To compensate, 

let’s try multiplying our prospective antiderivative by −1/3. Will that work? Yes! A quick check shows that the 

derivative of −(1 3⁄ ) cos(3𝑥) is indeed sin(3𝑥), so we’ve found our antiderivative.” 

Use this guess-and-adjust method to find antiderivatives of the following functions. 

a) cos(5𝑥)       b) sin(𝜋𝑥)       c) 𝑒−𝑥        d) 𝑒3𝑥       e) sec2(𝑥 2⁄ )       f) 10𝑥        g) 5−𝑥       h) 
1

1 + 4𝑥2
 

15. Verify that ln(𝑥) and ln(−𝑥) are both antiderivatives of 1/𝑥, and yet they do not differ by a constant! 

a) Why does this not violate our Antiderivative Lemma? 

b) Is there an antiderivative of 1/𝑥 with the same domain as 1/𝑥? If so, what is it? 

 
* A “lemma” is a small technical theorem used as a building block in the proof of a bigger, much more important theorem. After 

introducing one more preliminary idea, we’ll use our lemma to establish the Fundamental Theorem of Calculus.  



Full Frontal Calculus   Chapter 4: Integral Calculus – The Basic Ideas 
 

72 
 

Preparation for the FTC: Accumulation Functions  

Take any function 𝑓 and any fixed point 𝑎 in its domain. 

From 𝑎, go down the horizontal axis to 𝑥, a variable point. In 

doing so, imagine “accumulating” all the area lying above the 

interval [𝑎, 𝑥] and below 𝑓’s graph. The amount of area that 

we accumulate is clearly a function of 𝑥. We call this 

function, not surprisingly, the accumulation function 𝐴𝑓,𝑎. 

(See the figure at right, which is worth a thousand words.)  

If and when 𝑓’s graph dips below the horizontal axis, the 

accumulation function subtracts any area it obtains from its running total, since any such area lies on the 

“wrong side” of the axis. Hence, an accumulation function’s value will be positive or negative according 

to whether the majority of the area it accumulates lies above or below the horizontal axis.  

Example. Let the function 𝑓 be defined by the 

graph in the figure at right. In this case, the 

following statements hold: 

𝐴𝑓,𝑎(𝑏) = 2,       𝐴𝑓,𝑎(𝑐)  = −1, 

𝐴𝑓,𝑎(𝑑) = 0,       𝐴𝑓,𝑏(𝑐)  = −3, 

𝐴𝑓,𝑏(𝑑) = −2,    𝐴𝑓,0(𝑏) = −2.5 . 

Once you’ve digested this example, you are ready 

to check your understanding further by doing the 

following exercises. 

 

Exercises.   

16. If 𝑔(𝑥) = 4 − 𝑥, evaluate the following accumulation functions at the given inputs: 

a) 𝐴𝑔,0(4)       b) 𝐴𝑔,2(6)     c) 𝐴𝑔,−2(4)                      d) 𝐴𝑔,1(1)        

17. If 𝑠(𝑥) = sin 𝑥, find the value of 𝐴𝑠,0(2𝜋).        

18. We can express accumulation functions in integral notation. It is almost, but not quite, correct to write 

𝐴𝑓,𝑎(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥
𝑥

𝑎

. 

The problem is that this integral purports to sum things up while 𝑥 runs from 𝑎 to... 𝑥, which is syntactically 

incoherent. We stop summing when 𝑥 is 𝑥? But when is 𝑥 not 𝑥? To restore coherence, we recall that the 

variable in a function’s formula is just a placeholder, a “dummy”. (For example, it is just as reasonable to write 

the squaring function’s formula as 𝑓(𝑡) = 𝑡2 as it is to write it as 𝑓(𝑥) = 𝑥2.) We therefore write 

𝐴𝑓,𝑎(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎

, 

which takes care of the problem, since we are now summing things up as 𝒕 runs from 𝑎 to 𝑥. 

Your problem: If 𝑔(𝑥) = cos 𝑥, express the function 𝐴𝑔,0(𝑥) as an integral. 
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The Fundamental Theorem of Calculus (Stage 1: The Acorn) 
“Only by considering infinitesimal units for observation (the differential of history, the 

individual tendencies of men) and acquiring the art of integrating them (finding the 

sum of these infinitesimals) can we hope to arrive at laws of history."  

–Tolstoy, War and Peace, Epilogue, Part 2. 

The Fundamental Theorem of Calculus develops in two stages, the first of which contains the second – in 

the sense that an unremarkable-looking acorn contains, in potentia, a mighty oak. 

 

FTC (Acorn Version). 

The derivative of any accumulation function of 𝑓 is 𝑓 itself. 

Proof. Let 𝐴𝑓,𝑎 be an accumulation function for 𝑓. 

We’ll find its derivative by the usual geometric 

procedure: We’ll increase 𝑥 by an infinitesimal 

amount 𝑑𝑥, note the corresponding infinitesimal 

change 𝑑𝐴𝑓,𝑎 in the function’s value, and finally, 

take the ratio of these two changes. 

Since the accumulation function’s value is the shaded area under the graph, its infinitesimal 

increase 𝑑𝐴𝑓,𝑎 (obtained by nudging 𝑥 forward by 𝑑𝑥) is the area of the infinitesimal rectangle I’ve 

emphasized in the figure. Dividing this rectangle’s area by its width yields its height, 𝑓(𝑥). Rewriting 

this last sentence in symbols, we have 

𝑑𝐴𝑓,𝑎

𝑑𝑥     
=  𝑓(𝑥). 

This is exactly what we wanted to prove: The derivative of 𝑓’s accumulation function is 𝑓 itself.  ∎ 

 

The proof is simple enough, but having digested it, you probably remain puzzled by the result itself. 

After my grand promises that the FTC will help us evaluate integrals, I’ve presented you instead with a 

strange little acorn. What is it? What is it trying to tell us? Let us look closer. 

Since an accumulation function is effectively an integral (a point made explicit in exercise 18), the 

acorn version of the FTC suggests that integration and differentiation are inverse processes. That is, if we 

start with a function 𝑓, take its integral (i.e. form an accumulation function from it), and then take the 

derivative of the result, we end up right back where we started – with 𝑓 itself. Considering it this way, we 

recognize the acorn’s latent power: It establishes a link between the well-mapped terrain of derivatives 

and the still-mysterious land of integrals. Just as we can use the simple properties of exponentiation to 

establish the basic laws of its inverse process (taking logarithms), we will now be able to use the simple 

properties of derivatives to crack the code of integrals. 

To grow into an oak, our acorn still needs nutrients from the Antiderivative Lemma. In the following 

example, we’ll bring the lemma and the acorn together at last. (As a fun but unimportant bonus, we’ll also 

establish a surprising result about the sine wave.)  
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Example. Find the area under one arch of the sine wave. 

Solution. The area we want is 𝐴𝑠𝑖𝑛,0(𝜋). To find this value, we’ll 

first produce an explicit formula for the accumulation function 

𝐴𝑠𝑖𝑛,0(𝑥), and then we’ll substitute 𝜋 into it. 

To find our formula, we first note that 𝐴𝑠𝑖𝑛,0(𝑥) is an antiderivative of sin 𝑥 (by the FTC Acorn). 

Then, since we happen to know a formula for another antiderivative of sin 𝑥 (namely, −cos 𝑥), our 

Antiderivative Lemma guarantees that 𝐴𝑠𝑖𝑛,0(𝑥) = − cos𝑥 + 𝐶 for some constant 𝐶. A-ha! 

To find 𝐶’s value, we substitute zero (our accumulation function’s starting point) for 𝑥 in the 

previous equation. Doing so shows that 𝐶 must be 1, as you should verify. Hence, we now have  

𝐴𝑠𝑖𝑛,0(𝑥) = −cos 𝑥 + 1, 

from which it follows that the area under one arch of the sine wave is exactly 

𝐴𝑠𝑖𝑛,0(𝜋) = −cos𝜋 + 1 = 2!     

That the area is a whole number is remarkable. Much more remarkable, however, is the argument by 

which we obtained this result. You’ll use this argument in the exercises below. In the next section, we’ll 

generalize it to produce the full FTC in all its oaky glory. 

 

Exercises.   

19. Sketch the region that lies below the graph of 𝑦 = (1/3)𝑥2, above the 𝑥-axis, and between 𝑥 = 0 and 𝑥 = 2. 

Then, using the acorn version of the FTC (as in the example above), find its area. 

20. Do the same for the region lying below 𝑦 = 1/(1 + 𝑥2), above the 𝑥-axis, and between 𝑥 = 0 and 𝑥 = √3. [Hint 

for the graph: Start with the graph of 𝑦 = 1 + 𝑥2. Think of how it would change if all of its points’ 𝑦-coordinates 

were changed to their reciprocals; points far from the horizontal axis would be brought close to it, and vice-versa.] 

21. The acorn version of the FTC is often stated as follows:  
𝑑

𝑑𝑥
(∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎
) = 𝑓(𝑥). 

a) Convince yourself that this symbolic statement is equivalent to the verbal statement of the Acorn FTC I’ve 

given above. (Recall exercise 18.) 

b) Find the following derivatives:         
𝑑

𝑑𝑥
(∫ sin(𝑡)𝑑𝑡

𝑥

𝑎
),          

𝑑

𝑑𝑥
(∫ sin(𝑡2)𝑑𝑡

𝑥

𝑎
),          

𝑑

𝑑𝑥
(∫ sin(𝑡)𝑑𝑡

𝑥2

𝑎
). 

     [Hint for the third one: Let 𝑦 be the function whose derivative you seek. Let 𝑢 = 𝑥2. Then  
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑢

𝑑𝑢

𝑑𝑥
 .] 

22. Strictly speaking, our geometric proof of the Acorn FTC is not quite complete, though its holes are tiny and easily 

patched; you’ll provide the necessary spackle in this problem.  

a) The problem is that our proof tacitly assumed that 𝑓(𝑥) > 0 at the point 𝑥 where we took the accumulation 

function’s derivative. Pinpoint the exact sentence in the proof in which we first used this assumption. 

b) Having identified the flaw, we must show that the Acorn FTC holds even if we take the derivative at a point 

where 𝑓(𝑥) < 0. To do so, draw a picture representing this situation. Since nudging 𝑥 forward by 𝑑𝑥 will 

produce, in this case, an infinitesimal decrease in the accumulation function, we know that  𝑑𝐴𝑓,𝑎 will be the 

negative of the area of the rectangle in your picture. Translate this last statement into an equation; from it, 

deduce that even in this case, 𝑑𝐴𝑓,𝑎 𝑑𝑥⁄ = 𝑓(𝑥).  

c) What if 𝑓(𝑥) = 0 at the point where we take the accumulation function’s derivative?  
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The Fundamental Theorem of Calculus (Stage 2: The Oak) 

Once upon a time, you learned a clever technique for solving quadratics: completing the square. 

After using this technique a few times to solve particular quadratics, you applied it in the abstract to the 

equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, thereby deriving the quadratic formula. With this formula in hand, you never 

again needed to complete the square to solve individual quadratics; the formula completes the square for 

you under the hood, automating the process so that you don’t have to think about it. 

Something similar is about to happen here. Having used the Acorn FTC to evaluate a few specific 

integrals, we’ll now apply it to an integral in the abstract, thereby deriving the full-grown FTC, which we’ll 

use thereafter to evaluate any integrals we meet, content to let it automate the details for us. We’ll also 

drop the distinction between the two stages of the FTC; the oak contains the acorn as surely as the acorn 

the oak.  

Recall the previous section’s clever argument. We can think of an integral as representing one 

particular value of an accumulation function. By the Acorn FTC, this accumulation function is an 

antiderivative of the function being integrated. By the Antiderivative Lemma, we can express this 

accumulation function in terms of any other known antiderivative of the function being integrated. 

Consequently, if we know another antiderivative of the function being integrated, then we can find a 

formula for the accumulation function, which in turn allows us to evaluate the integral. It is a remarkable 

argument, and one that cries out for automation. Let us hearken unto its cries. 

 

Proof. Using the notation for accumulation functions introduced two sections ago, we note that 

the integral is equal to 𝐴𝑓,𝑎(𝑏). To evaluate this expression (and thus to evaluate the integral), we’ll 

find a formula for 𝐴𝑓,𝑎(𝑥), and then let 𝑥 = 𝑏.  

By the Acorn FTC, we know that 𝐴𝑓,𝑎(𝑥) is an antiderivative of 𝑓. Since 𝐹 is an antiderivative as 

well, the Antiderivative Lemma assures us that 𝐴𝑓,𝑎(𝑥) = 𝐹(𝑥) + 𝐶 for some constant 𝐶. 

To find 𝐶’s value, we let 𝑥 be 𝑎 in the preceding equation. Doing so yields 𝐶 = −𝐹(𝑎), so the 

equation in the preceding paragraph can be rewritten as 𝐴𝑓,𝑎(𝑥) = 𝐹(𝑥) − 𝐹(𝑎). Consequently, 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= 𝐴𝑓,𝑎(𝑏) = 𝐹(𝑏) − 𝐹(𝑎), 

as claimed.   ∎ 

 

The Fundamental Theorem of Calculus tells us that when we integrate a function over an interval, the 

result depends entirely on the values of the function’s antiderivative at the interval’s two endpoints. This 

is – or at least it should be – astonishing: The interval consists of infinitely many points, and the integral 

is a sum of infinitely many terms… yet somehow the integral’s value depends only on the antiderivative’s 

value at two points? How can this be? I encourage you to sit by the fire some winter evening and meditate 

The FTC. If 𝑓 is continuous over [𝑎, 𝑏] and has an antiderivative 𝐹, then 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= 𝐹(𝑏) − 𝐹(𝑎). 
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upon this mystery, bearing it in mind while thinking your way through the chain of proofs that led us to 

the Fundamental Theorem. The theme of understanding a function’s behavior throughout a region by 

understanding a related function’s behavior on the region’s boundary will return when you study vector 

calculus; there, the regions you’ll consider will be not just intervals of the one-dimensional real line, but 

regions of two, three, or higher-dimensional spaces. 

From a pragmatic perspective, the FTC is of supreme importance because it lets us evaluate any 

integral once we know an antiderivative of the function being integrated. We simply evaluate the 

function’s antiderivative at the boundaries of integration and subtract.  

Example 1. Evaluate the integral ∫ 𝑥4𝑑𝑥
3

2
. 

Solution. An antiderivative of 𝑥4 is 𝐹(𝑥) = 𝑥5/5, so by the FTC, 

∫ 𝑥4𝑑𝑥
3

2
= 𝐹(3) − 𝐹(2) =  

243

5
 − 

32

5
 =  

211

5
 .  

To simplify our written work when evaluating integrals, some special notation has been developed: 

 ( )
b

a
F x  is shorthand for 𝑭(𝒃) − 𝑭(𝒂).* 

This handy bracket notation lets us dispense with explanatory phrases such as “Since 𝐹(𝑥) is an 

antiderivative of blah-blah-blah, the FTC tells us that…” when evaluating an integral. If, for instance, we 

redo the previous example with this notation, we can reduce the entire solution to just a few symbols: 

Example 1 (Encore). Evaluate the integral ∫ 𝑥4𝑑𝑥
3

2
. 

Solution. ∫ 𝑥4𝑑𝑥
3

2
= 

3
5

2
/ 5x  =   

243

5
−
32

5
=
211

5
.     

This exemplifies the usual written pattern for using the FTC to evaluate simple integrals: We write down 

an antiderivative along with the attendant bracket notation, then we evaluate. Here’s another quick 

example to ensure that the pattern is clear.  

Example 2. Evaluate the integral ∫  
2

√1 − 𝑥2
 𝑑𝑥

1

1/2
. 

Solution. ∫  
2

√1 − 𝑥2
 𝑑𝑥

1

1/2
=  

1

1/2
2arcsin x = 2arcsin 1 − 2 arcsin(1 2⁄ ) = 𝜋 −

𝜋

3
= 

2𝜋

3
.     

Polynomials will be especially easy to integrate once we’ve made two small observations. We’ve made 

the first already (in exercise 10): To find an antiderivative of 𝑐𝑥𝑛, we raise the exponent by one and divide 

by the new exponent. The second is that antiderivatives, like derivatives, can be taken term by term.† 

Thus, to find an antiderivative of 𝑥3 + 2𝑥2 − 3𝑥, we simply sum up the terms’ antiderivatives to obtain 

(𝑥4 4)⁄ + (2𝑥3 3)⁄ − (3𝑥2 2)⁄ . Armed with these observations, integrating a polynomial is trivial.  

 

 
* The left bracket is often omitted by those for whom laziness trumps symmetry.  
† Antiderivatives can be taken term by term because derivatives can. In symbols, if 𝐹 and 𝐺 are antiderivatives of 𝑓 and 𝑔, then 

an antiderivative of (𝑓(𝑥) + 𝑔(𝑥)) is (𝐹(𝑥) + 𝐺(𝑥)) because (𝐹(𝑥) + 𝐺(𝑥))
′
= 𝐹′(𝑥) + 𝐺′(𝑥) = 𝑓(𝑥) + 𝑔(𝑥). 
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Example 3. Evaluate the integral ∫ (−2𝑥2 + 4𝑥 + 1)𝑑𝑥
2

0
. 

Solution. ∫ (−2𝑥2 + 4𝑥 + 1)𝑑𝑥
2

0
= 

2

3 2

0

2
2

3
x x x

 
− + + 
 

= (−
16

3
+ 8 + 2) − 0 = 

14

3
 .      

 

Exercises.   

23. Evaluate the following integrals, making use of the bracket notation introduced above. 

a) ∫ cos 𝑥 𝑑𝑥
3𝜋/2

0
       b) ∫ −2𝑥3𝑑𝑥

2

1
       c) ∫

1

𝑥
𝑑𝑥

𝑒2

1
       d) ∫

1

1+𝑥2
𝑑𝑥

√3

1
            e) ∫ sin 𝑥 𝑑𝑥

𝜋/4

𝜋/6
         f) ∫ √𝑥

38

−1
𝑑𝑥 

g) ∫ cos(3𝑥) 𝑑𝑥
𝜋/9

0
   [Hint: Recall exercise 14.]             h) ∫

1

√1 − 9𝑥2
𝑑𝑥

√3/6

0
    i) ∫ (𝑥9 + 5𝑥4 − 3𝑥)𝑑𝑥

1

0
      

j) ∫ 2 sin 𝑥 cos 𝑥 𝑑𝑥
𝜋/8

0
 [Hint: Use a trigonometric identity to rewrite the function being integrated.] 

24. Find the areas of the shaded regions shown below:  

a)     b)    c)  

 

 

 

   

25. Consider the region that lies in the first quadrant, under 𝑦 = √𝑥
3

, and to the left of 𝑥 = 8. By revolving it about 

the 𝑥-axis (as in exercise 4), we obtain a solid of revolution. Sketch it, mentally decompose it into infinitesimally 

thin slices, then draw a typical slice and find its volume. Finally, find the volume of the full solid. 

26. Consider the region lying in the first quadrant, above 𝑦 = √𝑥
3

, and below 𝑦 = 2. Revolve it around the 𝒚-axis. 

Sketch it and so forth, ultimately finding its volume. [Hint: To find the radius of a typical slice, you’ll want to think 

of 𝑥 as a function of 𝑦, rather than the other way around.] 

27. You probably know Democritus’s famous theorem about cones: A cone takes up exactly 1/3 

of the space of the cylinder containing it. (See the figure.) Since a cylinder’s volume is, of 

course, its base’s area times its height, Democritus’s result allows us to write down a formula 

for a cone’s volume in terms of its base radius and height: 𝑉𝑐𝑜𝑛𝑒 = (1 3⁄ )𝜋𝑟2ℎ. Please do not 

clutter your memory with this formula; rather, just remember Democritus’s result directly, 

from which you can reconstruct the formula in seconds whenever you need it. 

a) Prove Democritus right. [Hint: Think of the cone as a solid of revolution generated by a line segment with one 

endpoint at the origin. Find the equation of the line containing the segment; naturally, it will involve 𝑟 and ℎ. 

Use calculus to find the generated cone’s volume and verify that it agrees with the formula above.] 

b) Learn about Democritus, the laughing atomist philosopher. 

28. Here is a sometimes useful fact: Swapping an integral’s boundaries of integration multiplies its value by −𝟏.* 

To see why this is so, return to first principles: To integrate is to sum up 𝑓(𝑥)𝑑𝑥’s. If we integrate backwards 

(from right to left on the number line), we’ll encounter the same values of 𝑓(𝑥) that we meet when integrating 

in the usual way, but the 𝑑𝑥’s – the infinitesimal changes in 𝑥 – will be negative, since 𝑥 decreases as we move 

leftwards on the number line. Thus, each 𝑓(𝑥)𝑑𝑥 in the sum will be the negative of what it would have been had 

we integrated in the usual direction. The net result is that the value of our “backwards” integral is precisely the 

negative of its “forward” counterpart. Your problem: Meditate upon this until it makes sense. 

 
* For example, since ∫ sin 𝑥 𝑑𝑥

𝜋

0
= 2, our “useful fact” immediately tells us that ∫ sin 𝑥 𝑑𝑥

0

𝜋
= −2. 
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29. Rewrite the following as a single integral: ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
− ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑐
+ ∫ 𝑓(𝑥)𝑑𝑥

𝑑

𝑐
.   [Hint: Exercise 28 will help.] 

30. Given the function 𝑓 in exercise #7, evaluate the following integrals: 

a) ∫ 𝑓(𝑥)𝑑𝑥
𝑎

𝑏
                   b) ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑐
                      c) ∫ 𝑓(𝑥)𝑑𝑥

0

𝑐
.  

31. a) Prove that a constant factor 𝑐 can be pulled through the bracket notation. That is, [ ( )] [ ( )]b b

a acF x c F x= .  

b) Use the fact that you can pull a constant multiple through the bracket while evaluating these integrals: 

      ∫ cos(5𝑥)𝑑𝑥
3𝜋/10

0
,                   ∫ 𝑒−5𝑥

1

0
𝑑𝑥,                   ∫ √𝑥

25

4
𝑑𝑥,                   ∫

1

1 + 16𝑥2
𝑑𝑥

1/4

0
 

32. (The linearity properties of the integral) 

a) Convince yourself that constant factors can be pulled through integrals.  

∫ 𝑐𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝑐 ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
 for any constant 𝑐. 

[Hint: You can “see” this fact geometrically by thinking about rectangles’ areas. Or think arithmetically: 

An integral is a sum; you should be able to convince yourself that the property above is essentially a matter 

of pulling out a common factor from each term in the sum.]   

b) Convince yourself that the integral of a sum is the sum of the integrals.  

∫ (𝑓(𝑥) + 𝑔(𝑥))𝑑𝑥
𝑏

𝑎
= ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
+ ∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑎
. 

[Hint: As in the previous part, you can “see” this fact geometrically by thinking about rectangles’ areas. 

Or, think arithmetically: An integral is a sum; you should be able to convince yourself that the property above 

is essentially a matter of reordering the sum’s infinitely many terms.*]   

33. Is the integral of a product the product of the integrals? If so, prove it. If not, provide a counterexample. 

34. A warning: Vertical asymptotes cause the FTC to fail. Should you try to 

integrate over an interval containing one, the result will be gibberish. 

For example, there is an infinite amount of area below the graph of 

𝑦 = 1/𝑥2 and between 𝑥 = −1 and 1, but if we tried to apply the FTC 

to the integral ∫ 1/𝑥2
1

−1
𝑑𝑥, we’d obtain this wholly erroneous “result”: 

∫ 1/𝑥2
1

−1
𝑑𝑥 =

1

1[ 1 / ]x −− = −2. 

Your problem: In the statement of the FTC in the text, a phrase warns 

you that the FTC does not apply to this integral. Identify the phrase.

 
* (A footnote you may safely ignore if you wish.) This innocent-looking statement may induce fits of violent swearing in tetchy 

calculus teachers. In Chapter 7 you’ll learn why: Infinite sums don’t always behave as innocently as their finite brethren; under 
some circumstances, reordering an infinite sum’s terms can alter the sum’s value. Fortunately, this disturbing phenomenon 
happens only in infinite sums of a sort never occurring in ordinary integrals, so it need not concern you here. 

Still, if you are concerned (or are a tetchy calculus teacher yourself), you may prefer the following proof of the property in 
question: Let 𝐹 and 𝐺 be antiderivatives of 𝑓 and 𝑔 respectively. A linearity property of derivatives ensures that 𝐹(𝑥) + 𝐺(𝑥) 
is an antiderivative of 𝑓(𝑥) + 𝑔(𝑥). Hence, the FTC guarantees that 

∫ (𝑓(𝑥) + 𝑔(𝑥))𝑑𝑥
𝑏

𝑎
= ( ) ( )

b

a
F x G x+ = (𝐹(𝑏) + 𝐺(𝑏)) − (𝐹(𝑎) + 𝐺(𝑎)) 

                                      = (𝐹(𝑏) − 𝐹(𝑎)) + (𝐺(𝑏) − 𝐺(𝑎)) =    ( ) ( )
b b

a a
F x G x+ = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
+ ∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑎
. 

The preceding argument has the merit of demonstrating how to prove integral properties with the FTC by linking them to 
related derivative properties, but it conveys no real insight as to why the theorem holds. In contrast, “the theorem holds 
because it’s just a rearrangement of the sum’s terms” is both insightful and intuitive (after some initial thought), even if lacking 
in mathematical rigor. The goals at this stage should be insight and intuition; a healthy, astringent dose of rigor can always be 
added later. Rigor, injected too early, begets rigor mortis. 


